STB130NH02LSTP130NH02L
N-CHANNEL 24V - 0.0034 Ω - 120A D²PAK/TO-220
STripFET™ III POWER MOSFET FOR DC-DC CONVERSION
Table 1: General Features
TYPESTB130NH02LSTP130NH02L
■■■■■■■
Figure 1:PackageRDS(on)< 0.0044 Ω< 0.0044 Ω
ID90 A(2)90 A(2)
VDSS24 V24 V
TYPICAL RDS(on) = 0.0034 Ω @ 10 VTYPICAL RDS(on) = 0.005 Ω @ 5 V
RDS(ON) * Qg INDUSTRY’s BENCHMARKCONDUCTION LOSSES REDUCEDSWITCHING LOSSES REDUCEDLOW THRESHOLD DEVICE
SURFACE-MOUNTING D2PAK (TO-263)
POWER PACKAGE IN TUBE (NO SUFFIX) OR IN TAPE & REEL (SUFFIX “T4”)
13123TO-263(Suffix “T4”)D2PAKTO-220DESCRIPTION
The STB_P130NH02L utilizes the latest advanceddesign rules of ST’s proprietary STripFET™ technology.It is ideal in high performance DC-DC converterapplications where efficiency is to be achieved at veryhigh output currents.
Figure 2: Internal Schematic DiagramAPPLICATIONS
■SYNCHRONOUS RECTIFICATIONS FOR TELECOM AND COMPUTER■OR-ING DIODE
Table 2: Ordering Information
SALES TYPESTB130NH02LT4STP130NH02LMARKINGB130NH02LP130NH02LPACKAGETO-263TO-220PACKAGINGTAPE & REELTUBEABSOLUTE MAXIMUM RATINGS
SymbolVspike(1)VDSVDGRVGSID(2)ID(2)IDM(3)PtotEAS (4)TstgTj
Parameter
Drain-source Voltage RatingDrain-source Voltage (VGS = 0)Drain-gate Voltage (RGS = 20 kΩ)Gate- source Voltage
Drain Current (continuous) at TC = 25°CDrain Current (continuous) at TC = 100°CDrain Current (pulsed)
Total Dissipation at TC = 25°CDerating Factor
Single Pulse Avalanche EnergyStorage Temperature
Max. Operating Junction TemperatureValue302424± 2090903601501900-55 to 175
UnitVVVVAAAWW/°CmJ°C1/13
April 2005
Rev. 2.0
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
Table 4: THERMAL DATA
Rthj-caseRthj-amb
Tl
Thermal Resistance Junction-caseThermal Resistance Junction-ambient
Maximum Lead Temperature For Soldering Purpose
MaxMax
1.062.5300
°C/W°C/W°C
ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED)
Table 5: OFF
SymbolV(BR)DSSIDSSIGSS
Parameter
Drain-source
Breakdown VoltageZero Gate Voltage
Drain Current (VGS = 0)Gate-body LeakageCurrent (VDS = 0)
Test Conditions
ID = 25 mA, VGS = 0VDS = 20 VVDS = 20 VVGS = ± 20 V
Min.24
110±100
Typ.
Max.
UnitVµAµAnA
TC = 125°C
Table 6: ON (*)
SymbolVGS(th)RDS(on)
Parameter
Gate Threshold VoltageStatic Drain-source On Resistance
Test Conditions
VDS = VGS VGS = 10 V VGS = 5 V
ID = 250 µAID = 45 AID = 22.5 A
Min.1
0.00340.005
0.00440.008
Typ.
Max.
UnitVΩΩ
Table 7: DYNAMIC
Symbolgfs (5)CissCossCrssRG
Parameter
Forward TransconductanceInput CapacitanceOutput CapacitanceReverse Transfer Capacitance
Gate Input Resistance
Test Conditions
VDS = 10 V
ID=45A
Min.
Typ.55445011261411.6
Max.
UnitSpFpFpFΩ
VDS = 15V f = 1 MHz VGS = 0
f = 1 MHz Gate DC Bias = 0 Test Signal Level = 20 mV Open Drain
2/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
ELECTRICAL CHARACTERISTICS (continued)
Table 8: SWITCHING ON
Symboltd(on)trQgQgsQgdQoss(6)Qgls(7)
Parameter
Turn-on Delay TimeRise Time
Total Gate ChargeGate-Source ChargeGate-Drain ChargeOutput Charge
Third-quadrant Gate Charge
Test Conditions
VDD = 10 V ID = 45 A
VGS = 10 VRG=4.7 Ω
(Resistive Load, Figure )VDD=10 V ID=90 A VGS=10 V
Min.
Typ.142246913927
93Max.
UnitnsnsnCnCnCnCnC
VDS= 16 V VGS= 0 VVDS< 0 V VGS= 10 V
Table 9: SWITCHING OFF
Symboltd(off)tf
Parameter
Turn-off Delay TimeFall Time
Test Conditions
VDD = 10 VID = 45 A
VGS = 10 VRG=4.7Ω,
(Resistive Load, Figure 3)
Min.
Typ.6940
Max.54
Unitnsns
Table 10: SOURCE DRAIN DIODE
SymbolISDISDMVSD (5)trrQrrIRRM
Parameter
Source-drain Current
Source-drain Current (pulsed)Forward On VoltageReverse Recovery TimeReverse Recovery ChargeReverse Recovery Current
ISD = 45 A VGS = 0ISD = 90 Adi/dt = 100A/µs
Tj = 150°CVDD = 15 V
(see test circuit, Figure 5)
47582.5
Test Conditions
Min.
Typ.
Max.903601.3
UnitAAVnsnCA
(1) Garanted when external Rg=4.7 Ω and tf < tfmax. (5) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.(2) Value limited by wire bonding (6) Qoss = Coss*∆ Vin , Coss = Cgd + Cds . See Appendix A(3) Pulse width limited by safe operating area. (7) Gate charge for synchronous operation(4) Starting Tj = 25 oC, ID = 45A, VDD = 10V .
Figure 3: Safe Operating AreaFigure 4: Thermal Impedance3/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
Figure 5: Output CharacteristicsFigure 6: Transfer CharacteristicsFigure 7: TransconductanceFigure 8: Static Drain-source On ResistanceFigure 9: Gate Charge vs Gate-source VoltageFigure 10: Capacitance Variations4/13元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
Figure 11: Normalized Gate Threshold Voltage vs TemperatureFigure 12: Normalized on Resistance vs TemperatureFigure 13: Source-drain Diode Forward CharacteristicsFigure 14: Normalized Breakdown Voltage vs Temperature..5/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
Figure 15: Unclamped Inductive Load Test Circuit
Figure 16: Unclamped Inductive Waveformtive LoadFigure 17: Switching Times Test Circuits For Resis-
Figure 18: Gate Charge test CircuitFigure 19: Test Circuit For Inductive Load Switch-
ing And Diode Recovery Times6/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
TO-220 MECHANICAL DATADIM.ACDEFF1F2GG1H2L2L3L4L5L6L7L9DIA
132.6515.256.203.503.75
mm.
MIN.4.41.232.400.490.611.141.144.952.4010
16.4028.90
142.9515.756.603.933.85
0.5110.1040.6000.2440.1370.147
TYP. MAX.4.61.322.720.700.881.701.705.152.7010.40
MIN.0.1730.0480.0940.0190.0240.0440.0440.1940.0940.393
0.51.137
0.5510.1160.6200.2600.1540.151
inch.
TYP. TYP.
0.1810.0510.1070.0270.0340.0670.0670.2030.1060.409
7/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
D2PAK MECHANICAL DATADIM.AA1A2BB2CC2DD1EE1GLL2L3MRV2
0°4.88151.271.42.4
0.4
8°
0°
10
8.5
5.2815.851.41.753.2
0.1920.5910.0500.0550.094
0.015
8°
mm.
MIN.4.42.490.030.71.140.451.218.95
8
10.4
0.394
0.334
0.2080.6240.0550.0690.126
TYP. MAX.4.62.690.230.931.70.61.369.35
MIN.0.1730.0980.0010.0280.0450.0180.0480.352
0.315
0.409
inch.
TYP. TYP.
0.1810.106
0.0090.0370.0670.0240.0540.368
8/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
D2PAK FOOTPRINTTUBE SHIPMENT (no suffix)*
TAPE AND REEL SHIPMENT (suffix ”T4”)*
REEL MECHANICAL DATA
DIM.ABCDGNT
1.512.820.224.4100
30.4
BASE QTY1000
26.413.2mmMIN.
MAX.330
0.0590.5040.7950.9603.937
1.197BULK QTY10001.0390.520
MIN.
inch
MAX.12.992
TAPE MECHANICAL DATA
DIM.A0B0DD1EFK0P0P1P2RTW
mmMIN.10.515.71.51.591.6511.44.83.911.91.9500.2523.7
0.3524.3MAX.10.715.91.61.611.8511.65.04.112.12.1
MIN.0.4130.6180.0590.0620.0650.4490.10.1530.46800751.574.0.00980.933
0.01370.956inch
MAX.0.4210.6260.0630.0630.0730.4560.1970.1610.4760.082
* on sales type
9/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
APPENDIX ABuck Converter: Power Losses EstimationSW1SW2The power losses associated with the FETs in a Synchronous Buck converter can beestimated using the equations shown in the table below. The formulas give a goodapproximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the workingtemperature, is not considered. The real device behavior is really dependent on how theheat generated inside the devices is removed to allow for a safer working junctiontemperature.The low side (SW2) device requires:• • • • • Very low RDS(on) to reduce conduction lossesSmallQgls to reduce the gate charge losses Small Coss to reduce losses due to output capacitanceSmall Qrr to reduce losses on SW1 during its turn-onThe Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to sourcevoltage to avoid the cross conduction phenomenon;The high side (SW1)device requires:• Small Rg and Ls to allow higher gate current peak and to limit the voltagefeedback on the gate • Small Qg to have a faster commutation and to reduce gate charge losses• Low RDS(on) to reduce the conduction losses.10/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
High Side Switch (SW1)Low Side Switch (SW2)PconductionRDS(on)SW1*I2L*δRDS(on)SW2*I2L*(1−δ)PswitchingVin*(Qgsth(SW1)+Qgd(SW1))*f*ILIgZero Voltage SwitchingPdiodeRecoveryConductionNot ApplicableNot Applicable1Vin*Qrr(SW2)*fVf(SW2)*IL*tdeadtime*fQgls(SW2)*Vgg*fPgate(QG)Qg(SW1)*Vgg*fPQossVin*Qoss(SW1)*f2Vin*Qoss(SW2)*f2ParameterdQgsthQglsPconductionPswitchingPdiodePgatePQossMeaningDuty-cyclePost threshold gate charge Third quadrant gate chargeOn state lossesOn-off transition lossesConduction and reverse recovery diode lossesGate drive lossesOutput capacitance losses1Dissipated by SW1 during turn-on11/13元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
Table 11:Revision History
Date
April 2005
Revision
2.0
Description of Changes
ADDED PACKAGE TO-220
12/13
元器件交易网www.cecb2b.com
STB130NH02L STP130NH02L
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequencesof use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is grantedby implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subjectto change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are notauthorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronicsAll other names are the property of their respective owners.
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America.
www.st.com
13/13
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务