您好,欢迎来到测品娱乐。
搜索
您的当前位置:首页EViews计量经济学实验报告-多重共线性的诊断与修正

EViews计量经济学实验报告-多重共线性的诊断与修正

来源:测品娱乐
时间 地点 实验题目 多重共线性的诊断与修正

一、实验目的与要求:

要求目的:1、对多元线性回归模型的多重共线性的诊断;

2、对多元线性回归模型的多重共线性的修正。

二、实验内容

根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)

(一)模型设定及其估计

经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。研究“农业的发展反而会减少财政收入”这个问题。

设定如下形式的计量经济模型:Yi=1+2X2+3X3+4X4+5X5+6X6+7X7+i

其中,Yi为财政收入CS/亿元;X2为农业增加值NZ/亿元;X3为工业增加值GZ/亿元;X4为建筑业增加值JZZ/亿元;

X5为总人口TPOP/万人;X6为最终消费CUM/亿元;X7为受灾面积SZM/千公顷。

图1: 1978~2007年财政收入及其影响因素数据

年份

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 19 1990 1991 1992 1993 1994

建筑业

农业增工业增加总人口

财政收入增加值

加值值GZ/亿TPOP/万

CS/亿元 JZZ/亿

NZ/亿元 元 人

1132.3 1027.5 1607 138.2 96259 1146.4 1270.2 1769.7 143.8 97542 1159.9 1371.6 1996.5 195.5 98705 1175.8 1559.5 2048.4 207.1 100072 1212.3 1777.4 2162.3 220.7 101654 1367 1978.4 2375.6 270.6 103008 12.9 2316.1 27 316.7 104357 2004.8 25.4 3448.7 417.9 105851 2122 2788.7 3967 525.7 107507 2199.4 3233 4585.8 665.8 109300 2357.2 3865.4 5777.2 810 111026 26.9 4265.9 84 794 112704 2937.1 5062 6858 859.4 114333 3149.48 5342.2 8087.1 1015.1 115823 3483.37 5866.6 10284.5 1415 117171 4348.95 6963.8 14188 2266.5 118517 5218.1 9572.7 19480.7 29.7 119850

受灾面

最终消费

积SZM/

CUM/亿元

千公顷 2239.1 2633.7 3007.9 3361.5 3714.8 4126.4 4846.3 5986.3 6821.8 7804.6 9839.5 111.2 12090.5 14091.9 17203.3 219.9 29242.2

50790 39370 44526 39790 33130 34710 310 44365 47140 42090 50870 46991 38474 55472 51333 48829 55043

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 6242.2 7407.99 8651.14 9875.95 11444.08 13395.23 16386.04 103. 21715.25 26396.47 319.29 38760.2 51321.78 12135.8 14015.4 14441.9 14817.6 14770 14944.7 15781.3 16537 17381.7 21412.7 22420 24040 28095 24950.6 3728.8 29447.6 4387.4 32921.4 4621.6 34018.4 4985.8 35861.5 5172.1 40036 5522.3 43580.6 5931.7 47431.3 65.5 54945.5 7490.8 65210 8694.3 76912.9 10133.8 91310.9 11851.1 107367.2 14014.1 121121 1223 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 36748.2 43919.5 48140.6 51588.2 55636.9 61516 66878.3 71691.2 77449.5 87032.9 96918.1 110595.3 128444.6 45821 469 53429 50145 49981 54688 52215 47119 54506 37106 38818 41091 492

利用EV软件,生成Yi、X2、X3、X4、X5、X6、X7等数据,采用这些数据对模型进行OLS回归。

(二)诊断多重共线性

1、双击“Eviews”,进入主页。输入数据:点击主菜单中的File/Open /EV Workfile—Excel—多重共线性的数据.xls ; 2、在EV主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter”.出现OLS回归结果,图2: 图2: OLS 回归结果

Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:07 Sample: 1978 2007 Included observations: 30

Variable C X2 X3 X4 X5 X6 X7

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient -66.694 -0.970688 1.084654 -2.763928 0.077613 -0.047119 0.007580

Std. Error 54.156 0.330409 0.228521 2.076994 0.067974 0.081509 0.035039

t-Statistic -1.029832 -2.937841 4.746397 -1.330735 1.141808 -0.578084 0.216329

Prob. 0.3138 0.0074 0.0001 0.1963 0.2653 0.5688 0.8306 10049.04 12585.51 16.93634 17.26329 701.4747 0.000000

0.994565 Mean dependent var 0.993147 S.D. dependent var 1041.849 Akaike info criterion 24965329 Schwarz criterion -247.0452 F-statistic 2.167410 Prob(F-statistic)

由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F统计量为701.47,模型拟和很好,回归方程整体上显著。

但是当=0.05时,t/2(nk)=t0.025(23)=2.069,不仅X4、X5、X6、X7的系数t检验不显著,而且X2、X4、X6系数的符号与预期相反,这表明很可能存在严重的多重共线性。(即除了农业增加值X2、工业增加值X3外,其他因素对财政收入的影响都不显著,且农业增加值X2、建筑业增加值X4、最终消费X6的回归系数还是负数,这说明很可能存在严重的多重共线性。)

3、计算各解释变量的相关系数:

在Workfile窗口,选择X2、X3、X4、X5、X6、X7数据,点击“Quick”—Group Statistics—Correlations—OK,出现相关系数矩阵,如图3:

图3: 相关系数矩阵

X2 X3 X4 X5 X6 X7

X2 1 0.9729806145

6147 997 06745 24667 72465

1 93188 68758 11784 36215

0.98266062340.9985218083

1 28051 41596 04353

0.92797842940.84390020650.81521359

1 46979 08787

0.986261970.992123670.99605684340.8888480555

1 51582

0.22619996580.12944371030.154571840.387767280.1851728808

1

X3 6147

X4 997 93188

X5 06745 68758 28051

X6 24667 11784 41596 46979

X7 72465 36215 04353 08787 0.1851728808

51582

0.97298061450.98266062340.92797842940.986261970.2261999658

0.99852180830.84390020650.992123670.1294437103

0.815213590.99605684340.15457184

0.88884805550.38776728

由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是农业增加值X2、工业增加值X3、建筑业增加值X4、最终消费之间X6,相关系数都在0.8以上。 这表明模型存在着多重共线性。

(三)修正多重共线性

1、采用逐步回归法,去检验和解决多重共线性问题。分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下图4:在EV主页界面的窗口,输入“ls y c x2”,“回车键”。

Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:49 Sample: 1978 2007 Included observations: 30

Variable C X2

Coefficient -4086.544 1.454186

Std. Error 1463.091 0.117235

t-Statistic -2.793090 12.40398

Prob. 0.0093 0.0000

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

0.846034 Mean dependent var 0.840536 S.D. dependent var 5025.770 Akaike info criterion 7.07E+08 Schwarz criterion -297.2033 F-statistic 0.166951 Prob(F-statistic)

10049.04 12585.51 19.946 20.04030 153.8588 0.000000

依次如上推出X3、X4、X5、X6、X7的一元回归。综上所述,结果如下图4:

图4.一元回归估计结果

变量 参数估计值 t统计量 X2 X3 X4 X5 X6 X71.454186 0.426817 3.186851 0.8297 0.330354 0.111530 12.40398 28.90168 22.67733 6.206025 18.125 0.320338 0.846034 0.967567 0.9483 0.579041 0.921494 0.003651 0.840536 0.9608 0.946520 0.5006 0.918690 -0.031932 R2R 2 2、其中,加入X3的R最大,以X3为基础,顺次加入其他变量逐步回归。结果如下图5:

Dependent Variable: Y Method: Least Squares Date: 10/13/10 Time: 01:27 Sample: 1978 2007 Included observations: 30

Variable C X2 X3

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient 1976.086 -1.105339 0.7219

Std. Error 388.2413 0.105222 0.028879

t-Statistic 5.0841 -10.50486 25.00056

Prob. 0.0000 0.0000 0.0000 10049.04 12585.51 16.82930 16.96942 2103.946 0.000000

2 0.993624 Mean dependent var 0.993152 S.D. dependent var 1041.474 Akaike info criterion 29286057 Schwarz criterion -249.4395 F-statistic 1.662637 Prob(F-statistic)

依照上面,在顺次加入X4、X5、X6、X7,进行逐步回归。综合结果如下图5:

图5.加入新变量的回归结果(一)

变量 X3,X2 X2 -1.105339 X3 0.7219 1.65227 0.514796 (26.29703) 0.910503 (11.18199) 0.430639 (30.62427) X4 -9.255748 X5 X6 X7 R2(-10.50486) (25.00056) 0.993152 0.990547 0.98301 0.985025 0.970053 X3,X4 (11.46367) (-8.514941) -0.261997 (-5.325453) X3,X5 -0.3859 (-5.984236) X3,X6 -0.125579 X3,X7 (-2.099504) 经比较,新加入X2的方程R= 0.993152 ,改进最大, 但是X2得系数为负,这显然不符题意。 在X3的基础上分别加入其他变量后发现,X2,X4,X5,X6,X7的系数都为负,与预期估计违背。因此这些变量都会引起严重的多重共线性,全部剔除,只保留X3。修正的回归结果为:

Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:50 Sample: 1978 2007 Included observations: 30

Variable C X3

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient -1075.2 0.426817

Std. Error 570.5337 0.014768

t-Statistic -1.884708 28.90168

Prob. 0.0699 0.0000 10049.04 12585.51 18.335 18.48276 835.3074 0.000000

2 0.967567 Mean dependent var 0.9608 S.D. dependent var 2306.678 Akaike info criterion 1.49E+08 Schwarz criterion -273.8402 F-statistic 0.292531 Prob(F-statistic)

ˆ= -1075.2 + 0.426817X3 Yi(-1.884708) (28.90168)

2R2= 0.967567 R=0.9608 F=835.3074

这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.426817亿元。

四、实践结果报告:

为研究“农业的发展反而会减少财政收入”的问题,根据1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。 最后修正的回归结果为:

ˆ= -1075.2 + 0.426817X3 Yi(-1.884708) (28.90168)

2R2= 0.967567 R=0.9608 F=835.3074

这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.426817亿元。

可决系数为0.967567,较高,说明模型拟合优度高;F值为835.3074,说明整个方程显著;斜率系数的t值28.90168,大于t统计量,t检验显著,符合题意。

逐步回归后的结果虽然实现了减轻多重共线性的目的,但反映农业增加值,建筑业增加值的X2,X3等也一并从模型中剔除出去了,可能会带来设定偏误,这是在使用逐步回归时需要注意的问题。

附加:

1、 分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下:

ls y c x2

Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:49 Sample: 1978 2007 Included observations: 30

Variable C X2

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient -4086.544 1.454186

Std. Error 1463.091 0.117235

t-Statistic -2.793090 12.40398

Prob. 0.0093 0.0000 10049.04 12585.51 19.946 20.04030 153.8588 0.000000

0.846034 Mean dependent var 0.840536 S.D. dependent var 5025.770 Akaike info criterion 7.07E+08 Schwarz criterion -297.2033 F-statistic 0.166951 Prob(F-statistic)

ls y c x3

Dependent Variable: Y Method: Least Squares Date: 10/12/10 Time: 17:50 Sample: 1978 2007 Included observations: 30

Variable C X3

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient -1075.2 0.426817

Std. Error 570.5337 0.014768

t-Statistic -1.884708 28.90168

Prob. 0.0699 0.0000 10049.04 12585.51 18.335 18.48276 835.3074 0.000000

0.967567 Mean dependent var 0.9608 S.D. dependent var 2306.678 Akaike info criterion 1.49E+08 Schwarz criterion -273.8402 F-statistic 0.292531 Prob(F-statistic)

ls y c x4

Dependent Variable: Y Method: Least Squares

Std. Error 727.96 0.140530

t-Statistic -1.696695 22.67733

Coefficient -1235.177 3.186851

Prob. 0.1008 0.0000 10049.04 12585.51 18.85437 18.94778 514.2614 0.000000

Date: 10/12/10 Time: 17:50 Sample: 1978 2007 Included observations: 30

Variable C X4

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

0.9483 Mean dependent var 0.946520 S.D. dependent var 2910.486 Akaike info criterion 2.37E+08 Schwarz criterion -280.8155 F-statistic 0.215531 Prob(F-statistic)

ls y c x5

Dependent Variable: Y Method: Least Squares

Date: 10/12/10 Time: 17:51 Sample: 1978 2007 Included observations: 30

Variable C X5

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient -820.42 0.8297

Std. Error 15618.35 0.133707

t-Statistic -5.533260 6.206025

Prob. 0.0000 0.0000 10049.04 12585.51 20.95269 21.04611 38.51474 0.000001

0.579041 Mean dependent var 0.5006 S.D. dependent var 8310.188 Akaike info criterion 1.93E+09 Schwarz criterion -312.2904 F-statistic 0.132458 Prob(F-statistic)

ls y c x6

Dependent Variable: Y Method: Least Squares

Std. Error 934.3495 0.018222

t-Statistic -2.169281 18.125

Coefficient -2026.867 0.330354

Prob. 0.0387 0.0000 10049.04 12585.51 19.27334 19.36675 328.65 0.000000

Date: 10/12/10 Time: 17:51 Sample: 1978 2007 Included observations: 30

Variable C X6

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

0.921494 Mean dependent var 0.918690 S.D. dependent var 3588.750 Akaike info criterion 3.61E+08 Schwarz criterion -287.1000 F-statistic 0.1127 Prob(F-statistic)

ls y c x7

Dependent Variable: Y Method: Least Squares

Std. Error 16135.44 0.348162

t-Statistic 0.305825 0.320338

Coefficient 4934.616 0.111530

Prob. 0.7620 0.7511

Date: 10/12/10 Time: 18:36 Sample: 1978 2007 Included observations: 30

Variable C X7

R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

0.003651 Mean dependent var -0.031932 S.D. dependent var 12784.87 Akaike info criterion 4.58E+09 Schwarz criterion -325.2138 F-statistic 0.065981 Prob(F-statistic)

10049.04 12585.51 21.81425 21.90767 0.102616 0.751091

2、 以X3为基础,顺次加入其他变量逐步回归。 X3、X2:

Dependent Variable: Y Method: Least Squares Date: 10/13/10 Time: 01:27 Sample: 1978 2007 Included observations: 30

Variable C X2 X3

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat X3、X4:

Dependent Variable: Y Method: Least Squares Date: 10/13/10 Time: 01:27 Sample: 1978 2007 Included observations: 30

Variable C X3 X4

R-squared Adjusted R-squared

Coefficient -241.4297 1.652270 -9.255748

Std. Error 318.0985 0.144131 1.087001

t-Statistic -0.7578 11.46367 -8.514941

Prob. 0.4544 0.0000 0.0000 10049.04 12585.51

Coefficient 1976.086 -1.105339 0.7219

Std. Error 388.2413 0.105222 0.028879

t-Statistic 5.0841 -10.50486 25.00056

Prob. 0.0000 0.0000 0.0000 10049.04 12585.51 16.82930 16.96942 2103.946 0.000000

0.993624 Mean dependent var 0.993152 S.D. dependent var 1041.474 Akaike info criterion 29286057 Schwarz criterion -249.4395 F-statistic 1.662637 Prob(F-statistic)

0.991199 Mean dependent var 0.990547 S.D. dependent var

S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat X3、X5:

Dependent Variable: Y Method: Least Squares

1223.617 Akaike info criterion 40425409 Schwarz criterion -254.2747 F-statistic 1.669559 Prob(F-statistic)

17.15165 17.29177 1520.477 0.000000

Std. Error 5304.514 0.019576 0.049197

t-Statistic 5.107138 26.29703 -5.325453

Coefficient 27090. 0.514796 -0.261997

Prob. 0.0000 0.0000 0.0000 10049.04 12585.51 17.73798 17.87810 839.9479 0.000000

Date: 10/13/10 Time: 01:28 Sample: 1978 2007 Included observations: 30

Variable C X3 X5

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat X3、X6:

Dependent Variable: Y Method: Least Squares Date: 10/13/10 Time: 01:28 Sample: 1978 2007 Included observations: 30

Variable C X3 X6

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient 444.9692 0.910503 -0.3859

Std. Error 457.86 0.081426 0.0579

0.984182 Mean dependent var 0.983010 S.D. dependent var 10.462 Akaike info criterion 72660152 Schwarz criterion -263.0698 F-statistic 0.451996 Prob(F-statistic)

t-Statistic 0.971827 11.18199 -5.984236

Prob. 0.3398 0.0000 0.0000 10049.04 12585.51 17.61172 17.75184 954.8084 0.000000

0.986058 Mean dependent var 0.985025 S.D. dependent var 1540.096 Akaike info criterion 041223 Schwarz criterion -261.1758 F-statistic 0.674281 Prob(F-statistic)

X3、X7:

Dependent Variable: Y Method: Least Squares Date: 10/13/10 Time: 01:28 Sample: 1978 2007 Included observations: 30

Variable C X3 X7

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient 4583.805 0.430639 -0.125579

Std. Error 2748.746 0.014062 0.059814

t-Statistic 1.667599 30.62427 -2.099504

Prob. 0.1070 0.0000 0.0453 10049.04 12585.51 18.30479 18.44491 470.6908 0.000000

0.972118 Mean dependent var 0.970053 S.D. dependent var 2177.943 Akaike info criterion 1.28E+08 Schwarz criterion -271.5718 F-statistic 0.580360 Prob(F-statistic)

教师评阅意见:

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务