Field and Wave Electromagnetics
2008.3
ˆjzˆEaxExfe;x方向极化,z方向传播UPWlossless EEmejrˆxExmaˆyEymaˆzEzme=ajrˆn=aˆxxaˆyyaˆzzvector wave number:a(描述传输媒质的参数)ˆzˆEaxExfe;x方向极化,z方向传播UPW22loss Amplitude;phase propagationdirectionpolarizationEEme22ˆnrˆaˆxExmaˆyEymaˆzEzmeaˆr;ˆn=aˆxxaˆyyaˆzz;ˆˆaˆxxaˆyyaˆzzc;raH1cˆnEaˆn波的传播方向a8.10 Oblique incidence at a plane dielectric boundary
均匀平面波以任意角度入射到无限大平面分界面时出现的反射与折射情况
(1)分界面的法单位矢量:
ˆnaˆnaˆiax
ˆraz=0
(2)入射波的传播方向: (3)反射波的传播方向: (4)反射波的传播方向:
ˆiaˆraˆtay
ˆta入射线、反射线、折射线与分界面法向之间的交角称为入射角,反射角,透射角入射面、反射面、透射面是同一平面yoz面
入射线、反射线、折射线与分界面法向构成的平面称为入射面、反射面、透射面
3个分量分别讨论,场叠加原理
EEmeˆnrjajrˆˆˆaxExmayEymazEzme垂直极化波,平行极化波:相对于入射面
ˆnaˆraE∥ˆnˆiax z=0 y ˆtaaiEirary 3个分量分别讨论,场叠加原理 EEmeˆnrjaˆxExmaˆyEymaˆzEzmeajrz a入射面:yoz 垂直极化波:E沿x方向,H在yoz面内(x,z分量) 平行极化波: E在yoz面内(y,z分量),H沿x方向 相对于入射面:电场矢量的方向垂直或平行于入射面 入射面、反射面、透射面是同一平面 8.10 Oblique incidence at a plane dielectric boundary
When an electromagnetic wave strikes a plane boundary with any arbitrary angle,we refer to it is as oblique incidence.In fact ,normal incidence is a special case of oblique incidence.We discuss oblique incidence because it leads to three well-known laws in optics:Snell’s law of reflection,Snell’s law of
refraction,and Brewster’s law directing polarization by reflection. Once again,we consider a wave that is linearly polarized and a boundary that constitutes a plane at z=0.
The plane that includes the unit normal to the boundary and the propagation constant of the incident wave is called the plane of incidence,as shown in figure 8.16.
In general,the E field of the incident wave can make any angle with the plane of incidence;however,we will limit our discussion to two special cases:
First case ,we will assume that E field is normal to the plane of incidence and refer to it as a perpendicularly polarized wave as shown in figure8.17.where the E field in in the ax direction and yoz is the plane of incidence. In this case the E field is parallel to the interface xoz plane
second case ,the E field lies in the plane of incidence,and is called a parallel polarized wave.In this case,the H field lies in the plane parallel to the interface.The superposition theorem allows us to obtain all the necessary information for an incident wave that makes an arbitrary angle with the plane of incidence
8.10.1 Perpendicular polarization Medium 1 x Medium 2 1,1,1Incidence wave 2,2,2z Transmitted wave EiˆniSiairEtrefraction ˆntStaHtHiErHrˆnrSraz=0 电场:全部沿+x方向; Reflection wave 8.10.1 Perpendicular polarization (1)The normal form of wave Incident wave Reflected wave Transmitted wave refracted (2)using boundary condition incident Medium 2 EiHianHriraki2ˆ2cˆ2ctEtHtakrErreflected Medium 1 Transmitted refracted aktˆ1cˆzE1E2aˆzH1H2 a11cyzz00 7.11707.118电场:全部沿+x方向;z0(3)讨论significance ˆjzˆEaxExfe;x方向极化,z方向传播UPWlossless EEmejrˆxExmaˆyEymaˆzEzme=ajrˆn=aˆxxaˆyyaˆzzvector wave number:a(描述传输媒质的参数)ˆzˆEaxExfe;x方向极化,z方向传播UPW22loss Amplitude;phase propagationdirectionpolarizationEEme22ˆnraˆxExmaˆyEymaˆzEzmeaˆr;ˆn=aˆxxaˆyyaˆzz;ˆˆaˆxxaˆyyaˆzzc;raH1cˆnEaˆn波的传播方向a(1)The normal form of wave Incident wave EEmeˆaˆnrˆxExmaˆyEymaˆzEzmeaˆr;ˆn=aˆxxaˆyyaˆzz;22c;raˆxxaˆyyaˆzzˆˆaˆirˆiaˆˆˆx:EiaˆxE0eˆxE0epolarization direction:aa;22ˆˆi;ˆi11c;raˆxxaˆyyaˆzz;iˆ1aˆirˆiaˆysiniaˆzcosi;ˆiaˆyˆ1siniaˆzˆ1cosiaˆyˆ1yaˆzˆ1zaˆirˆ1siniyˆ1cosizˆ1siniycosizˆˆxE0eEia8.124a;11ˆ1siniycosizˆˆiEiˆysiniaˆzcosiaˆxE0eHiaaˆ1cˆ1c1ˆˆ1siniycosizˆzsiniaˆycosi8.124bHiE0eaˆ1c(1)The normal form of wave Reflected wave ˆn反射波电场分量 z0入射波电场分量 z0Er z0Ei z0ˆEr0ˆEi0z0EEmeˆnraˆ ˆˆˆˆEE8.98 E nn0r0z0 i0z0反射波振幅与入射波在分界面上的比值,包括初始相位在内,是一个复数 ˆrrˆrrˆraˆraˆˆˆnE0eˆx:EraˆxEr0eˆxpolarization direction:aa;22ˆˆˆˆ;;raˆxaˆyaˆz;ar1rr11cxyzˆraˆysinraˆzcosr;aˆrrsinrycosrzaˆ1sinrycosrzˆˆnE0eˆxEra8.125a;11ˆ1siniycosizˆˆnE0eˆnErˆysinraˆzcosraˆxHraaˆ1cˆ1c1ˆ1siniycosizˆˆnE0eˆzsinr-aˆycosrHra8.125bˆ1cText rong ˆra(1)The normal form of wave Transmitted wave or refracted EEmenˆn透射波电场分量 z0入射波电场分量 z0Et z0Ei z0ˆEt z0ˆˆˆˆˆ8.100 EEEniz0n0tz0ˆEi z0透射波振幅与入射波在分界面上的比值,包括初始相位在内,是一个复数 ˆtrˆrˆtaˆaˆˆˆx:EtaˆxEt0eˆxˆnE0epolarization direction:aa;222ˆˆ;ˆˆ;raˆxaˆyaˆz;ˆa2222cxyzˆaˆysinaˆzcos;aˆrsinycoszaˆ2sinycoszˆˆxˆnE0eEa8.126a;2text11ˆ2sinycoszˆˆnEˆysin2aˆzcos2aˆxˆnE0eHaaˆ2cˆ2c1ˆ2sin2ycos2zˆˆzsin2aˆycos28126bHˆnE0eaˆ2c(2)using boundary condition ˆzEiErEaz0ˆzE1E2az00 7.117ˆ1siniycosizˆˆxE0e0;Eia8.124a;ˆ1siniycosizˆ2sinycoszˆˆˆˆxnE0eˆxˆnE0eEra8.125a;Ea8.126a;ˆ1siniycosizˆ1siniycosizˆˆE0eˆnE0eˆzaˆx0;aˆ2sinycoszˆˆnE0ez0ˆayˆ1siniyˆ1siniyˆ2sinyˆˆˆˆnE0eˆnE0eE0ez00;Y为任何值时成立,则,y=0也成立 ˆˆˆ1ˆˆnˆˆn8.128EEE0n0n0ˆ1siniyˆ1siniyˆ2sinyˆ1siniˆ1siniˆ2sin8.129ˆ1siniˆ1siniˆ2sin8.129snell's law of reflectionˆ1siniˆ1sinisinisinrir18.130The angle of incidence is equal to the angle of reflection. Snell’s law of refraction jˆsin11c无耗介质ˆˆt11sini2sin8.131siniˆ2j22c01r01rn111sint=8.131sini2202r02rn2ˆˆˆ1ˆˆˆˆEEE0n0n0nn8.128(2)using boundary condition ˆzH1H2 a1ˆˆ1siniycosizˆzsiniaˆycosi8.124bHiE0eaˆ1c1ˆ1siniycosizˆˆnE0eˆzsinr-aˆycosrHra8.125bˆ1c1ˆ2sin2ycos2zˆˆzsin2aˆycos28126bHˆnE0eaˆ2cz007.118ˆzHiHrHaˆxHiyHryHya0;z0ˆzHiyaˆyHizaˆzHryaˆyHrzaˆzHyaˆyHzaˆza11ˆˆ1siniycosizˆ1siniycosizˆˆEecos-cosEe0irn0ˆˆ1c1cˆxacos1ˆEˆeˆ2sin2ycos2z2n0ˆ2cz01ˆˆ1siniy11ˆˆsinysiny1i22ˆeˆeˆnEˆxE0eˆacosi-cosrcosE002n0ˆ1cˆ1cˆ2cˆ1siniˆ1siniˆ2sin8.129ir1ˆcos-cosˆˆcosˆˆEEE0irn0n02ˆ1cˆ2cˆncos11-ˆncos28.132ˆ1cˆ2cˆnˆn8.1281ˆ2cos1ˆ1cos2Er0ˆn8.133ˆ2cos1ˆ1cos2Ei0ˆ2cos1Et02ˆn8.134ˆ2cos1ˆ1cos2Ei0Dielectric-dielectric interface 120, and nonmagnetic media 120,j11csintˆ18.131siniˆ2j22c11rˆ1j11closslessj11nonmagnetic media8.135ˆ2j22cj2222r1rsin28.137sin12r1r2cos21sin21sin18.1382r21ˆ1closslessˆ12ˆ2ˆ2c11nonmagnetic media22r8.136211r22rcos1sin211r2cos1n;n1n8.1392r2r2cos1sin1cos1sin211r1r1rsin28.137sin12rθ2 <θ1, 折射角<入射角 光疏→光密 Case 1: If medium 2 is denser than medium 1εr2 >εr1 光密→光疏 Case 2: If medium 1 is denser than medium 2 εr2 <εr1 θ2>θ1, 折射角>入射角 cos90时对应的入射角i,称为Critical angle,记为crt90Critical angle(临界) iEr02cos11cos2ˆn18.1332,1是实数Ei02cos11cos2Total reflection 全发射 1r1rn1sint,sini2r2rn2ic是否为全反射???11sint对于非磁性介质:sintsinisini22若12,即当平面波从光密媒质(折射率大)入射到光疏媒质时此时折射波将贴着分界面传播。对于这种情况称为全反射在t90,sint1,sinisinc(折射率小)时,ti,故存在一个入射角c,使得透射角t90,21发生全反射时的入射角称为临界角,用c表示Case3: If medium1 is denser than medium 2εr2 >εr1,andθi>θc, 11sintsintsinisini222sini;sint1;t90;full reflection,ic if c 11sintsin2sini1 8.141a222(full reflection)???1r2costcos21sintjsint1jsin118.1412r2'2costpure imaginaryCase3: If medium 2 is denser than medium 1εr2 >εr1,andθi>θc, 全发射的定义:反射系数绝对值为1 1r2costjsin118.1412rEr02cos11cos2ˆnEi02cos11cos212cos1j1sin2112cos1j1sin112=1 2,1是实数,分子分母互为复共轭ic是全反射ic时发生全反射,此时介质2中的透射场为:1r1r22costjsin11=j8.141sin1102r2rˆ2sinycoszˆˆxE0eEa8.126a;2textj2sinyjzˆˆEaxE0e8.126a;j2siny2zˆˆxE0eEae8.126a;?8.141取正,取负j2siny2zˆˆxE0eEae8.126a;8.142取负Nonuniform plane wave Propagation at y direction Attenuation at z direction 沿z方向衰减,y方向传播,电磁场只存在分界面附近,称为表面波 222Why 介质2中存在电磁场,为什么还叫全反射 1r2sin118.142b2rSurface wave Why HSav1介质2中存在电磁场,为什么还叫全反射 全反射是指能量全部反射回介质一中,而不是指场全部返回到介质1中,介质2中可以存在电磁场 j2siny2zˆˆxE0eEae8.142120, j2siny2zˆˆzsin2aˆycos28126bnE0eea21*ReEH2cost1sinijsini12211ˆj2siny2z2zj2sinyˆˆxnE0eˆzsin2aˆycos2eReaenE0ae22SavSav12ˆ222zˆysin2aˆzcos2ReE0ea2212ˆ212ˆ22z2zˆyaE0sin2eSavyE0sin2e;Savz022222222sincsinc8.140sint11110222rfor nonmagnetic media:120:sinc0111rIf the left-hand side of (8.140) is equal to the right-hand side when θ1>θc, ,then (a) θc is called the critical angle,(b)ρ=1(c) θ2=900(d)the transmitted wave will propagate entirely parallel to the interface.simply stated ,there will be no power propagating along the z direction in medium 2,and the reflected power density will be equal to the incident power density .This is called total reflection .For this reason the critical angle is also referred to as the angle of total reflection j2siny2zˆˆxE0eEae8.126a;8.142取负1r1r22costjsin118.142222sin118.142b2r2rWhere we have only retained the negative sign for the second exponential term because the wave cannot grow as a function of z(没有能量的输入),This equation shows that the wave is propagating along the y direction and is attenuating in the z direction with an attenuation constant of(8.142b) These are the traits(特征) of a non-uniform plane wave.As it is decaying in the z direction and is propagating in the y direction, it is also called the surface wave.Once again,there is no real power flow in the z direction.Thus ,based upon experimental observations in optics,we expect total reflection for all angles of incidence greater than the critical angle Savy12ˆ22zE0sin2e;Savz0220,12Dielectric-perfect conductor interface ˆ2cos1ˆ1cos2ˆ2cos1Er0Et02ˆnˆn8.1338.134ˆ2cos1ˆ1cos2ˆ2cos1ˆ1cos2Ei0Ei0介质2 是理想导体 ˆ2ˆ1jωjωjω0ˆ11ˆ11111jω1111下角标1都去掉 ˆn1; ˆn0ˆ1siniycosizˆ1siniycosizˆˆˆnE0eˆxE0eˆxEia8.124a;Era8.125a;E1EiErˆxE0eaj1siniycosiznE0ej1siniycosiz8.125a;ˆxE0eE1aj1siniyej1cosizej1cosizj1siniyˆ axE02jsin1cosizeE12jE0sinzcosejsyinˆx8.143aaˆxejtE1ReE1ejtRe2jE0sinzcosejsyinaˆx2jE0sinzcosReacostysinjsintsinyˆx2E0sincoszsintsiny8.146aE1a1ˆˆ1siniycosizˆzsiniaˆycosi8.124bHiE0eaˆ1c1ˆ1siniycosizˆˆˆHrazsinr-aycosrE0e8.125bˆ1cHi1E0e1jsinycoszˆazˆycos8.124bsinazHrE0ejsinycoszˆaˆycos8.125bsin-a11jsinycoszjsinycoszˆyE0coseH1HiHr=aE0cose11jsinycoszjsinycoszˆzE0e -asinE0esinE0E0jsinyjcoszjcoszjsinyjcoszjcoszˆyˆH1acosee-e-asinee+ezˆyH1aE0cosejsinyˆ2coscosz-aE0zsinejsiny2jsincoszH1y2E0E0cosesinejtjsinycoscosz8.143b2jsincosz8.143bE0ˆzH1z=ajsinyˆzH1z=ReH1ze=ReaˆzH1z=ReaH1z=-E0E0sinejsiny2jsincoszejtsin2jsincoszcostsinyjsintsinysinsincosz2sintsiny8.146cH1yReH1yReH1yE0E0E0cosejsiny2coscoszejt8.143bcos2coscoszcostsinyjsintsinycos2coscoszcostsiny8.146bE12jE0sinzcose2E0jsyinˆx8.143aaˆx2E0sincoszsintsiny8.146aE1aH1yE0cosesinejsinycoscosz8.143b2jsincosz8.143bˆzH1z=aH1yjsinyE0cos2coscoszcostsiny8.146bsinsincosz2sintsiny8.146cH1z=-E0We realize that the fields propagate in the y direction(y方向的行波) and form a standing wave pattern along the z direction(z方向驻波). ˆx2E0sincoszsintsiny8.146aH1yE1aH1z=-E0sinsincosz2sintsiny8.146cE0cos2coscoszcostsiny8.146bthe nodal points for the electric field intensity and Z component of the magnetic field intensity are at: msincosz=0;cosz=mm0,12..8.147az8.147bcosΒcosθ:is the component of the phase constant in the z direction, thus we can define the wavelength in that direction as (8.148) In terms of the wavelength in the z direction,the nodal points are 2mz8.148znodez for m=1,2,3...8.149acos2Thus,the E field has nodes at z=0,and at multiples of half-wavelengths from the interface in the negative z direction.The y component of the H field has nodal points at odd multiples of quarter-wavelengths in the negative z direction coscosz=0;cosz=-m2m0,12..znode-m12z2m18.149bm0,1,2..cos4propagate in the y direction(y方向的行波) 等相位面传播速度 the phase velocity,upyˆx2E0sincoszsintsiny8.146aE1aequiphase:tsinyC,t,yt1C1y1(1) up= 8.150asin等相位面在Δt时间内,向z轴正向行进Δy upt2Cdyy2y1y2(2) upy==8.150sindtt2t1sinsinSince sinθ<1,we expect that upy>up,if the medium is free space,we can expect the phase velocity in the y direction t o be greater than the speed of light.Does this mean that the energy propagation in the y direction can occur with a velocity greater than the speed of light?The answer,of course,is no Einstein 相对论决定 The energy velocity——The group velocity (a)The energy propagates with a velocity known as the group velocity.To determine the group velocity,we will calculate the average power flow using the Poynting vector and the energy jsyinˆx8.143aE2jEsinzcosea0density 1ˆyH1aE01*22ˆˆy8.151aSavReE1H2E0sincoszsina2cosejsinyˆz2coscosz-aE0sinejsiny2jsincoszAs the power density is independent of variations along the direction,we can calculate the total average power per unit length along the x direction and between any two nodal points in the z direction as mnz1,z28.1478.151b coscosTwo distinct node points for the E field such that mn ˆdsPSav12E0upsin222E0sincoszsindxdzmn8.151ccos0z2z1(b)Average power from energy density: wwe+wm11*ReDEReBH*44u能速度=ugˆSwtotalddFor simple medium: 1111121****wDEBHEEHHEH244444420E112122EEdieletric,H4Hc442w2Esinzcos8.1522ˆuSw=ugw能速度ˆdsuwdsPSavgy10z2z12E0ug222E0sinzcosugydxdzmn8.153cos(8.151c)=(8.153) ugyupsin8.154up1up= 8.150aupy=8.150sinsinugyupyu8.1552pthe phase velocity1 up= 8.150a upysin=upsin8.150传播介质不同,相速度不同; 传播空间不同,相速度不同; Parallel-plate wave-guide(平行板波导,矩形波导,谐振腔) As explained earlier,the fields in the dielectric medium represent a pure standing wave in the z direction and a traveling wave in the y direction.We can place another conducting plate at any of the nodal points,without disturbing the field patterns.In this case, it appears as if the fields are being guided by the two perfectly conducting planes.These perfectly conducting planes are said to form a parallel-plate wave-guide, and the preceding equations are the solutions of Maxwell’s equations for this wave-guide znodeznodemz for m=1,2,3...8.149a21z2m1 m0,1,2.. 8.149b4导体板:1↑6 平行板波导,矩形波导,谐振腔 理想导体边界条件:Et=0,Hn=0 EEmeˆnrjaˆxxaˆyyaˆzz;22;raˆn=aˆxxaˆyyaˆzzaˆxcoscosaˆycossinaˆzsinaEEmeˆnrjaˆxxaˆyyaˆzz;;ra22ˆn=aˆxxaˆyyaˆzzaˆxcoscosaˆycossinaˆzsinaznodeznodemz for m=1,2,3...8.149a21z2m1 m0,1,2.. 8.149b4导体板:1↑6 平行板波导,矩形波导,谐振腔 理想导体边界条件:Et=0,Hn=0 垂直极化波 znodemz for m=1,2,3...8.149a2两板之间的最小距离d是半个波长,如果距离d再小,怎么样? 截止频率,截止波长,截止波数 ˆx8.143aE12jE0sinzcosejsyinaˆx2E0sincoszsintsiny8.146aE1aH1y2E0E0cosejsinycoscosz8.143bsinejsinyH1yE0cos2coscoszcostsiny8.146bsinsincosz2sintsiny8.146cˆzH1z=a2jsincosz8.143bH1z=-E0(1)在z方向为驻波(2)在y方向为行波 uP=ksini;uP0=k0sinic(3)等振幅面——z为常数的平面;等相位面——y为常数的面,是非均匀平面波(4)平行板波导的原理(5)电磁波沿y方向传播,Ex垂直于波的传播方向,为TE波(横磁波)TEM波、TE波及TM波 TEM波、TE波及TM波的电场方向及磁场方向与传播方向的关系如下图示。 E E E es H TEM波 H TE波 es H TM波 es Transverse electromagnetic wave Transverse electric wave (TE) Transverse magnetic wave (TM) 垂直极化波入射到理想导电体分界面上:TE波 作业:chap 8 P414
E:4 6 7 P:8;E 8 10 11 14 P 24 25(极化)
P:28 29 31 30 32垂直入射 斜入射:书上例题及课外例题 谢谢!
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务