AnAccurateUTDModelfortheAnalysisofComplexIndoorRadioEnvironmentsin
MicrowaveWLANSystems
PaoloBernardi,LifeFellow,IEEE,RenatoCicchetti,SeniorMember,IEEE,andOrlandinoTesta
Abstract—Anaccurateuniformtheoryofdiffraction(UTD)modelfortheanalysisofcomplexindoorradioenvironments,inwhichmicrowaveWLANsystemsoperate,ispresented.ThemodelemploysaheuristicUTDcoefficientsuitabletotakeintoaccounttheeffectsofbuildingfloors,walls,windows,andthepresenceofmetallicandpenetrablefurniture.Anumericaltoolbasedonanenhancedtridimensionalbeam-tracingalgorithm,whichincludesdiffractionphenomena,hasbeendevelopedtocomputethefielddistributionwithahighdegreeofaccuracy.Afterthevalidationofthemodel,obtainedbymeansofsomecomparisonswithmeasurementsavailableinliterature,anaccurateelectromag-neticcharacterizationoftypicalindoorenvironmentshasbeenperformed.Thenumericalresultsshowthattheelectromagneticfielddistributionandthechannelperformancesaresignificantlyinfluencedbythediffractionprocessesarisingfromthepresenceoffurniture.
IndexTerms—Indoorradiopropagation,wirelessLANsystems,penetrableobjects,electromagneticscattering,heuristicdiffrac-tioncoefficient,beamtracing.
I.INTRODUCTION
T
HEPERFORMANCESofmodernwirelesscommunica-tionsystemsstronglydependontheelectromagneticchar-acteristicsoftheenvironmentinwhichtheyoperate.Thisas-pectisparticularlyimportantforcellularphones,wirelesslocalareanetworks(WLANs)andpersonalcommunicationsystemsoperatingincomplexenvironments(buildings,factories,hospi-tals,railwaystations,airports,etc.).Intheseenvironmentsthefieldpropagationisdominatedbymanyscatteringprocessesduetoobstacles(walls,openings,furniture,etc.),therefore,manywavesarriveatthemobilereceiverfromdifferentdirectionsandwithdifferenttimedelays[1]–[6].Inaddition,thepresenceofhumanbeings,electronicapparatusandsensibleequipmentsre-quiresthatWLANsystemsguaranteeelectromagneticcompat-ibility(EMC)requirements.TosatisfybothsystemandEMCrequirementsitisnecessarythepreliminaryevaluation,directlyduringthedesignphase,ofthefieldcoverage,theperformancesoftheradiochannel,andthepotentialEMC/electromagneticin-terference(EMI)problems[7],[8].Tothisend,toovercomeex-
ManuscriptreceivedNovember20,2001;revisedJuly14,2003.ThisworkwassupportedbytheItalianMinistryforUniversityandScientificandTechno-logicalResearch(MURST)underContractENEA2001/10100/D23“Protectionofhumanbeingsandenvironmentagainstelectromagneticemissions.”
TheauthorsarewiththeUniversityofRome“LaSapienza,”De-partmentofElectronicEngineering,18-00184Rome,Italy(e-mail:bernardi@mail.die.uniroma1.it;cicchetti@mail.die.uniroma1.it).DigitalObjectIdentifier10.1109/TAP.2004.830260
pensivemeasurementcampaigns,anumericalpredictiontooltoinvestigatetheelectromagneticpropagationcharacteristicscanbeusefullyemployed.
Inthelastfewyears,predictionmodels,suitabletoanalyzeindoorradioenvironments,bothemptyandwithmetallicfurni-ture,havebeenpresented[5],and[9]–[18].Anempiricalmodelhasbeenproposedin[9]toevaluatethepowerdelayprofilewithinemptyindoorenvironments.Ageometricaloptics(GO)modelhasbeenusedin[10]–[12]topredictthefielddistributioninemptyindoorenvironments,whilein[13]–[15]themetallicuniformtheoryofdiffraction(UTD)coefficient[19]hasbeenemployedtomodelthescatteringarisingfrommetallicfurni-ture.Finally,in[5],and[16]–[18]thefieldscatteredbysimplepenetrablewedges,modelingindoorpartitions,havingalocalinteriorwedgeanglelessthanhasbeentakenintoaccountbymeansoftheheuristicdiffractioncoefficientsproposedin[20],[21].Asdiscussedin[22],suchcoefficientscanbeemployedonlyforalimitedclassofpenetrablestructuresandforparticularincidencesituations.Therefore,penetrablefurnitureandjunc-tionsbetweenpartitionscannotbeadequatelymodeled.Sincethefieldpropagationinindoorenvironmentscanbeconsider-ablyinfluencedbythepresenceoftheseconstituents[6],[23],itisnecessarytoemploysuitableelectromagneticfieldpredictionmodelsforarealisticevaluationoftheradiochannelcharacter-isticsandtheidentificationofzoneswherethefieldstrengthex-ceedsspecificthresholds.Acomprehensivereviewofthestateofartconcerningthepropagationpredictionmodelsforwirelesscommunicationsystemshasbeenrecentlypublishedin[6].Inthispaper,ahigh-frequencymodeltoanalyzecomplexin-doorenvironments,inwhichWLANsystemsoperate,ispre-sented.Themodel,basedonanenhancedbeam-tracingalgo-rithm,employsanewheuristicdiffractioncoefficienttoeval-uatethefieldinteractionwithpenetrableobjects.Suchcoeffi-cient,derivedusingthemethodologyproposedin[22],ispar-ticularlyusefultomodeltypicalindoorscenariosandprovidesanaccuratedescriptionofthescatteredfield[24],[25],yieldingphysicalinsightintothemechanismsresponsibleforthemulti-pathphenomenon.
Theformatofthispaperisasfollows.Themodelsadoptedforthehigh-frequencyfieldpredictionandfortheevaluationoftheradiochannelparametersaredescribedinSectionsIIandIII,respectively.InSectionIV,afterapreliminaryanalysistovali-datetheproposedmodelandtoestablishitsaccuracy,numericalresultsconcerningthefieldcoverageandchannelperformancesofsometypicalindoorenvironmentsarepresented.
0018-926X/04$20.00©2004IEEE
1510IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004
II.HIGH-FREQUENCYFIELDPREDICTIONMODEL
Themodeladoptedtopredictthehigh-frequencyfieldisbasedontheUTD.Theelectromagneticfieldisrepresentedintermsofdiffractedandray-opticalfields.Thevariouselementsoftheenvironmentaremodeledasjunctionsofthinflatmulti-stratelossy/losslessstructures[17].Thegeometricoptics(GO)fieldiscomputedbymeansofreflectionandtransmissiondyadics[26],whilethediffractedfieldisevaluatedbymeansofasuitableUTDheuristicdyadicdiffractioncoefficientderivedusingthemethodologyproposedin[22].Theadopteddiffractioncoefficientaccuratelymodelsthefieldinteractionwithedgesandjunctionsbetweenthinflatplatesofdifferentmaterials,sothatallthesignificantfieldprocesseswhichtakeplaceintheenvironmentarerigorouslymodeled.Sinceinindoorenvironmentsthefieldcontributionsarisingfromdoublediffractionaresmall[13],[16],onlyasinglediffractionprocessisconsidered.Accordingtothehigh-frequencyapproximation,theradiosourceismodeledusingitsvector-effectiveheighttodescribethegainpatternandthepolarizationproperties[27].Forcompletenessandforreader’sconvenience,thefieldpre-dictionproceduredescribedaboveisoutlinedinAppendixA.A.HeuristicDiffractionCoefficientforJunctionsFormedbyThinDielectricPlates
Theheuristicdiffractioncoefficient,derivedhereaccordingtothemethodologyproposedin[22],issuitabletoanalyzethefieldpropagationinindoorenvironmentsandtosolveawideva-rietyofelectromagneticscatteringproblemssuchasthosecon-cerningradartargetdetection,andradiationpatternsofantennasmountedonaircraft,shipsandbuildings.Sincethediffractioncoefficientforthevariousjunctionssuitabletomodelrealisticenvironmentscanbederivedinthesameway,onlythederiva-tionofthatconcerninga-junctionformedbythreethindielec-tricplates(seeFig.1)ispresentedbelow.
Assumingthattheincidentelectricfield
consistsofasphericalwavepropagatinginthe
direction,thehigh-fre-quencyelectricfield
scatteredfromthejunctionisgivenby(1)
whereisthespreadingfactor[28],
isthedyadicdiffractioncoefficient,andistheopticalpath
lengthfromthediffractionpoint
totheobservationpoint.Intheglobalreferencesystemformedbytheunit-vectors
,and(seeFig.1),theunit-vectorsdefiningthepropaga-tiondirectionfortheincidentandthediffractedraysareexpressedby
(2)(3)
where,andaretheusualsphericalangles.
WithreferencetotheincidencesituationshowninFig.1(b),thesphericalangleswhichidentifythecharacteristicopticraysontheKeller’scone,acrosswhichtheGOfieldisdiscontinuous,are
(4)
Fig.1.FielddiffractedfromaT-junctionformedbythreethinflatdielectricplateshavingdifferentelectricalcharacteristics.(a)Three-dimensionalviewand(b)crossview.Theray-basedreferencesystemsadoptedtodefinetheincidentandthescatteredfieldsareshown.
(5)(6)(7)
Consequently,theheuristicdyadicdiffractioncoefficient,de-rivedaccordingtothemethodologypresentedin[22],takes
BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1511
Fig.2.(a)BeamsshootingfromaTxantenna.Eachbeamisformedbythreerays.(b)Beamsplittingadoptedwhenabeamimpingesonathinplateedge.Theincidentbeamissubdividedintofourbeams.(c)DiffractedbeamsshootingfromthesegmentABbelongingtoathinplateedgeexcitedbyanincidentbeam.Thediffractedraytubeissubdividedinbeamshavingtriangularcrosssection.
thefollowingformshownin(8)atthebottomofthepage,
(with),andarethejumpwhere
indicator,thetransitiondyadicfunctions,andthe-fieldraytransferdyadrelatedtothethcharacteristicopticray,respec-tively[22].
In(8),thejumpindicatorsassumethefollowingvalues:
andbeingthewith
scalarcoefficientsforthesoftandhardpolarization,respec-tively[22].Theunit-vectorsdefiningthedyadsin(10)aregivenby
(11)(12)(13)(14)
where
(9)
andthetransitiondyadicfunctionstaketheform
(10)(15)
(8)
1512IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004
withbeingtheunit-vectorofthethcharacteristicopticray.
Finally,the-fieldraytransferdyads
appearingin(8)arecomputedas
(16)(17)(18)
(19)
(20)
with
(21)
and
(22)
Intheaboveexpressions,andarethereflectionandtransmissioncoefficientsforathinflatdielectricplate,respectively[26].Theunit-vectorsappearingin(16)–(20)
definetheusualparallel
andorthogonalfieldpolariza-tion.
B.TheBroadcastBeam-TracingAlgorithm
Thebeam-tracingmethod,employingthebroadcasttech-nique[1],[5],[12],[13],and[24]isusedforthecomputationoftheelectromagneticfieldandthecharacteristicsoftheradiochannel.Anenhancedversionofthistechniquehasbeendevelopedinthispaperinordertoimprovethenumericalaccuracyandtheefficiency.
Twopartsformthenumericalalgorithm.Thefirst,deter-minestherayopticalpaths,thesecondtheelectromagneticfielddistribution.Thehigh-frequencyfieldpropagationisdescribedbymeansofelectromagneticraybeams.Inthecomputationalmodel,eachbeamisformedbythreeraysbelongingtotheedgesofaraytubehavingatriangularcrosssection.Thefieldradiatedfromtheantennaismodeledbymeansofbeamsshootingfromtheantennalocationtowardallspacedirections,independentlyoftheobservationpoint[Fig.2(a)].Togeneratebeamshavingaboutthesametriangularcrosssectionarea[Fig.2(a)],themethodproposedin[12]hasbeenadopted.Duringthepropagation,thebeamcanimpinge,totallyorpartially,onasurfacedescribingtheenvironment[Fig.2(b)],itcancapturetheobservationpoint,or,finally,itmaynotinterceptanyoftheenvironmentelements.Inthefirstcase,usingSnell’slaw,thetransmittedandthereflectedbeamsareevaluated.Ifthebeampartiallyimpingesonthesurface,itissplittedinnewbeamsinawaythattheytotallyintercept,ornot,thesurfaceunderconsideration[Fig.2(b)].Then,therayopticalpathsofthediffractedfieldaredetermined.Tothisend,asubdivisionofthediffractedraytube,identifiedbythetwoKeller’sconeswhosetips,AandB,aretheextremesofthesegmentexcitedbytheincidentraybeam[Fig.2(c)],isperformed.Ifthebeamdoesnotinterceptanyenvironment
Fig.3.Channelpowerdelayprofile.DistancebetweenTxandRx:(a)3.03mand(b)22.42m.Thesolidlinecorrespondstothecomputedresults,whiletheshort-dotlinestothemeasurementsreportedin[11].Frequency950MHz.
elements,itdoesnotproduceanysecondarybeams,and,con-sequently,itcomesoutfromthefieldcomputationprocedure.Thesamehappenswhenthebeamhasacrosssectionlessthanadefinitearea,oritcarriesafieldamplitudelessthanaspecificthreshold,or,finally,itexceedsamaximumnumberofpermissiblebounces.Foreachobservationpointlightedbythebeam,theexactraypathiscomputedbymeansoftheimagemethodusingonlythesurfacesthathaveinteractedwiththebeam.Doingso,themultiplecounterrortypicaloftechniquesbasedonthereceptionsphere[1],[29],[30]iscompletelyeliminated.Inaddition,theproposedcomputationproceduredoesnotsufferfromthefieldapproximationerrorthatoccursinthosetechniquesusingthereceptionsphere[1],[5]orinthoseemployingthecomputationofthebeammedian-ray[12].Inthesecondpartofthebeam-tracingalgorithmtheGOanddiffractedfieldsareevaluatedusingthereflection,transmission,anddiffractiondyadicsatthepointswheretheincidentfieldimpinges.Inthenumericalprocedure,onlytheedgediffractionprocessesexcitedbytheGOfieldhavebeentakenintoaccount.ToobtainahighnumericalaccuracythecomputationshavebeenperformedtakingintoaccounttheGOfieldcontributionsthathaveexperienceduptofivereflections/transmissions.The
BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1513
Fig.4.Firstfloorofabuildingformedbytwoidenticalstoreys.Eachfloorconsistsoftworoomsandacorridor.TheTxpointindicatesthelocationofthehalf-wavedipolereflectorantennaworkingat2.44GHzandradiating10mW.Thefurniturewithintheroomsareevidencedinbold.Woodencabinetsarelabeled1,metalliccabinetislabeled2.
diffractedfieldarisingfromanyscatteringobjectisconsideredexcitedeitherbythelineofsightGOfield,orbytheGOcontri-butionsthathaveexperienceduptothreereflections/transmis-sions.Finally,thediffractedfieldcontributionistakenintoac-countwhetheritreachestheobservationpointdirectlyorafterthreereflection/transmissionprocesses.
Toestimatethenumericalefficiencyoftheabovementionedalgorithm,anexpressionusefultoevaluateitscomputationalburdenisgiveninAppendixB.
III.RADIOCHANNELMODEL
Anaccuratedescriptionoftheindoorradiochannelisimpor-tantbecausemultipathpropagationandtimedispersionsignif-icantlyinfluencetheperformancesofWLANcommunicationsystems.Inthesesystems,theimpulseresponseiscomposedofsinglepulsesthathavetemporalspreadofthesameorderofthetimedelaybetweenadjacentechoes.ThissuggeststoemploytheTurin’smodelbasedonfinite-durationpulses[2],[3],[17],and[25],tomodelthechannelbehavior.Therefore,assumingthattheeffectofthetimedispersionforeachechocanbemod-eledasaGaussianpulse,thepowerdelayprofile[1],[2]oftheradiochannelcanbewrittenasfollows
(23)
where
(24)
isthenumberofraypathsthatcontributetothesignal.and
In(23)–(24),theparameters,andaremagnitude,phase,
TABLEI
MATERIALCHARACTERISTICS
andtimedelayofthethcontribution,respectively,andisthetimevarianceoftheGaussianpulse.Using(23),thermsmulti-whichestab-pathdelayspreadofthepowerdelayprofile
lishesthemaximumusablebitrateinadigitalcommunicationsystem[1],[2],iscomputedas
(25)
where
istheexcessmeandelay,definedas
(26)
Toderivetheparametersappearingin(23)theelectromagneticfieldduetothetransmittingantennaatthereceiverpointisfirstcomputed,thentheopen-circuitvoltageatthereceivingan-tenna,linkedtotheimpulseresponse,isevaluatedusingthean-tennavectoreffectiveheight[27].
1514IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004
Fig.5.Electricfieldmagnitudeat1mabovethefloorofthefirststorey.Emptyroomscase.Frequency2.44GHz.
Fig.6.Electricfieldmagnitudeat1mabovethefloorofthefirststorey.Furnishedroomscase.Frequency2.44GHz.
IV.NUMERICALRESULTS
Tovalidatetheproposedmodelsomenumericalcomparisonswithresultspublishedinliteraturehavebeenpreliminarlyper-formed.Afirstvalidation,concerningthefieldpredictioninanemptycorridor,wasreportedin[25].Inthispaper,afurtherval-idationconcerningthepowerdelayprofileofacommunicationsystemworkinginamorecomplexenvironmenthasbeenper-formed.Theconsideredcasereferstotheindoorcommunicationsystemanalyzedin[11].Suchsystemconsistsoftwoomnidi-rectionaldisconeantennasoperatingat950MHzandlocatedat1.51mabovethefloor.Theroomwheretheantennasarelo-catedhasdimensions14.2431.123.3m.Theroomfloorandwallsaremadeofconcreteblockswithoutreinforcingsteel,whiletheconvexwoodenroofishiddenbyastippledceilingmadeofdrywallsheeting.Theroomwasemptyexceptforchairsandkitchenappliancesthatwerecollectedalongthewalls.Theimpulseresponsemeasurementsystemhasatemporalresolu-tionof25ns.Asin[11],sincetheinformationaboutdoors,win-dows,chairsandkitchenapplianceswereomitted,theindoorenvironmenthasbeenmodeledasanemptyparallelepipedalroomwith16cmthickwalls.Theparametersofthematerialsformingtheroomwalls,ceiling,andfloor,determinedtuningthenumericalresultswiththemeasurementsgivenin[11],are
mS/mforthefloor,theceilingandthelong
mS/mfortheshortwalls.Thecom-walls,and
putedresults,showninFig.3(a),areingoodagreementwiththeexperimentalmeasurements.Usingthesameparameters,afurthercomparison[Fig.3(b)]concerningthepowerdelaypro-filemeasuredinadifferentpointwithintheroomhasbeenper-formed.Asitcanbenoticed,theagreementisstillgood.
Afterthenumericalvalidation,theelectromagneticfielddis-tributionandtheradiochannelcharacteristicshavebeencarriedoutformorecomplexindoorenvironments.Forbrevity’ssakeonlyarepresentativeexampleisreported.
InFig.4,thefirstfloorofabuildingformedbytwoidenticalstoreys,wherea2.44GHzWLANsystemoperates,isshown.Theroomsareprovidedwithwoodentablesanddoors,woodenandmetalliccabinets,andglasswindows.ThecharacteristicsofthematerialsusedinthenumericalcomputationsaregiveninTableI.Theradiatingsystem,locatedattheTxpoint,consistsof
dipolereflectorantennaradiating10averticallypolarized
mW.Thefieldcomputationzoneisthehorizontalplaneat1mabovethefloor.Thepowerreceivedfromaverticallyoriented
dipoleantenna(Rx)hasbeenevaluatedalongthe-ori-entedlinescrossingthecenterofthetableslocatedatthefirstfloor.Theparameterofthecommunicationsystemhasbeenassumedof1ns.Suchavalueistypicalofagoodmeasurementsystemsuitabletodeterminethechannelimpulseresponse.ThemagnitudeoftheelectricfielddistributionatthefirstfloorofthebuildingisshowninFigs.5(emptyrooms)and6(furnishedrooms).Inthesefiguresthefastandslowmultipathfadingduetothescatteringprocessescausedbythefurnitureiswellevident.Inaddition,inthecorridorandinthesecondroomsignificantfieldlevelsduetothetransmissionthroughthepar-titionscanbenoticed.Theselevelshavemeanvaluesofabout
dBlessthanthoseintheroomcontainingtheRFsource.
Thespatialfielddistributiononthesecondstoreyissimilartothatobservedonthefirstfloor,whilethelevelsarelowerof
dBduetothesubstantialattenuationcausedbyabout
thetransmissionthroughtheceilingofthefirstfloor(seeFig.7).
BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1515
Fig.7.Electricfieldmagnitudeonaverticalsectionatx=5mwithfurnishedrooms.Frequency2.44GHz.
Fig.9.Cumulativedistributionfunctionofthereceivedsignalmagnitude.Antennascharacteristics:Tx(3.05m,4.52m,2.60m),half-wavedipolereflectorantenna;(Room1)Rx(5.24m,6.24m,1.00m),(Room2)Rx(5.24m,11.25m,1.00m),half-wavedipoleantenna.Frequency2.44GHz.
Fig.8.NormalizedpowerreceivedfromtheRxlocatedatthefirstfloor,versusdistancex.Antennascharacteristics:Tx(3.05m,4.52m,2.60m),half-wavedipolereflectorantenna;(a)Rx(x,6.24m,1.00m),(b)Rx(x,11.25m,1.00m),half-wavedipoleantenna.Frequency2.44GHz.Dotverticallinesindicatethelocationoftheinternalroomwallandthetableedges.
InFig.8(a)and(b),thepowerreceivedfromtheRxantennamovedalongthe-orientedlinelocatedatthecenteroftheta-blesinthetworoomsisshown.Asitcanbeobserved,thedif-fractedfieldhasasignificanteffectparticularlyevidentinthe
nonline-of-sight(NLOS)zoneandneartheedgesoftheobjectswherethediffractedfieldbecomesdominant.ThemeanlevelofthepowerreceivedbytheRxinthesecondroomisabout
dBlowerthanthatreceivedbytheRxintheroomcontainingtheradiosource,inagreementwiththefieldlevelsshowninFig.5(b).
Usingthepowerreceivedalongan-orientedsegmentof
,centeredatthecenterofthetables,andchoosing,length
,anestima-assuggestedin[31],asamplingrateofabout
tionofthelocalfastfadingstatisticshasbeenperformed.Todothat,theprocedureproposedin[32]hasbeenadopted.Fig.9,showsthecumulativedistributionfunctionofthereceivedsignalmagnitudecomputedinthetworooms.Asitcanbeobservedthecomputedcurvesareinexcellentagreementwiththoseob-tainedusingtheRiciandistribution.Inparticular,weobservethatintheroom1,containingtheradiosource,thestatisticsis
,describedbymeansofaRiciandistributionhaving
whileintheroom2(NLOSregion)theRiciandistributionex-hibitsa-factorofabout1.59,whichis,asobservedin[2],[33],and[34],veryclosetotheRayleighdistributionfunction.ThermsdelayspreadevaluatedalongthesamelineofFig.8(a)isshowninFig.10(a)[emptyrooms]and(b)
1516IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004
Fig.10.RMSdelayspreadversusdistance.Turin’smodelbasedonGaussianpulseshaving=1ns:(a)emptyrooms,(b)and(c)furnishedrooms.AntennacharacteristicsasinFig.8.Dotverticallinesindicatethelocationoftheinternalroomwallandthetableedges.
[furnishedrooms],whilethermsdelayspreaddepictedinFig.10(c)isthatcomputedinthesecondroomalongthesamelineofFig.8(b).Comparingthesecurves,itisevident,almosteverywhere,thereductionofthermsspreadduetothefieldinteractionwithpenetrablefurniture.Inparticular,Fig.10(b)showsthatintheline-of-sight(LOS)regionthefieldscatteredfromthefurnitureisresponsibleforanimprovementofthechannelperformances,whileadifferentbehaviorisobservedintheNLOSregionsasitisconfirmedinFig.10(c).Infact,sinceintheseregionstheGOanddiffractedfieldlevelscanresultcomparable,thediffractiveeffectsimprovethechannelcharacteristicsonlyinspecificzones.Itisinterestingtonotethat,incontrasttotheresultsbasedontheGaussianpulsemodel[Fig.10(a)],thosebasedonthedeltaTurin’smodel[1],[2]predictasignificantincrementofthermsdelayspreadbothintheLOSandintheNLOSregions(seeFig.11).
Finally,inFig.12thechannelpowerdelayprofilecomputedwiththeRxplacedclosetothecenterofthetableinthefirstandinthesecondroomisshown.Comparingthesefigures,itisofinteresttonotethatincontrastwiththeLOScase[Fig.12(a)],intheNLOScase[Fig.12(b)]theleadingechoisnotthefirstthatappearsinthepowerdelayprofile.Thismeansthattheelectro-magneticraypathalongwhichthepathlossisminimumisnot
Fig.11.RMSdelayspreadversusdistance.Turin’smodelbasedondeltapulses.AntennacharacteristicsasinFig.8.Dotverticallinesindicatethelocationoftheinternalroomwallandthetableedges.
theshortest.Consequently,thermsspreadisgreaterthanthatcomputedintheroomcontainingtheradiosource.
Inconclusion,fromtheanalysisofthenumericalresultsitappearsthatthepresenceofpenetrablefurnitureintheLOSre-
BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1517
Fig.12.Normalizedchannelpowerdelayprofile.Turin’smodelbasedonGaussianpulseshaving=1ns.Antennascharacteristics:Tx(3.05m,4.52m,2.60m)half-wavedipolereflectorantenna;(a)Rx(5.24m,6.24m,1.00m),(b)Rx(5.24m,11.25m,1.00m),half-wavedipoleantennas.Frequency2.44GHz.Thecomputedrmsspreadisalsoindicated.
gion,givingrisetogreaterfielddiffusion,isresponsibleforareductionofthelevelsofthereceivedsignalechoes.Thiseffectimprovesthechannelperformancesofawirelesscommunica-tionsystemasconfirmedfrommeasurementsreportedinliter-ature[3].
V.CONCLUSION
AUTDmodelfortheanalysisofcomplexindoorradioen-vironments,inwhichmicrowaveWLANsystemsoperate,hasbeenpresented.ThediffractionphenomenahavebeentakenintoaccountbymeansofasuitableUTDheuristicdiffractioncoef-ficientforpenetrableobjects.Themodelemploysanenhancedthree-dimensionalbeam-tracingalgorithmtocomputethefielddistributionandthechannelcharacteristicswithanadequatede-greeofaccuracy.Usingtheproposedmodel,theperformancesofmicrowavewirelesscommunicationsystemsoperatinginre-alisticindoorenvironmentshavebeenanalyzed.Aninvestiga-tionofthepropagationprocessesshowsthattheelectromagneticfielddistributionandthecharacteristicsoftheradiochannelaresignificantlyinfluencedbythediffractionphenomenadueto
Fig.13.Structureformedbyathinflatpenetrableplatelocatednearapartiallyreflectingplane.PandPindicatethesourceandtheobservationpoint,respectively.TheopticalraysexcitedbytheincidentelectricfieldEareindicated.
thepresenceofthefurniture.Inparticular,ithasbeenobservedthat,almosteverywhereintheLOSregion,thefieldscatteredfrompenetrablefurnitureisresponsibleforareductionofthermsdelayspread,whilethisparticulareffectisnotgenerallyobservableintheNLOSregion.Duetoitsnumericalaccuracyandlimitedcomputationalrequirements,theproposedmodelcanbesuccessfullyemployedtoestimatethechannelperfor-mances,thefielddistribution,andpotentialEMCproblemsdi-rectlyduringthedesignphaseofanindoorwirelesscommuni-cationsystem.
APPENDIXA
Inordertooutlinethehigh-frequencyfieldpredictionproce-dureadoptedinthepaper,inFig.13arepresentativestructureformedbyathinflatpenetrableplatelocatednearapartiallyre-flectingplane,excitedbyanincidentelectricfield,isshown.Tosimplifythegraphicalrepresentation,onlytheraysthathaveexperienceduptotwointeractionsaretakenintoaccount.WithreferencetothefieldprocessesshowninFig.13,theelectricfieldattheobservationpointisgivenbythesumofthefol-lowingcontributions.a)DirectRayField:
(A1)
b)ReflectedRayField:
(A2)
c)TransmittedandReflectedRayField:
(A3)
d)DiffractedRayField:
(A4)
1518IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004
e)DiffractedandReflectedRayField:
(A5)
In(A1)–(A5),isthewavenumberandistheoptical
pathlengthbetweenthepointsand.
APPENDIXB
Thecomputationalburdenoftheimplementedbeamtracingmethod,basedonalinearcostalgorithmtosearchthenearestsurfacethatishitfromtheray,isderivedconsideringtheray-surfaceintersectionprocessasthebasiccostelement.Asin[35],theworstcasesituationisconsideredtodeterminethecompu-tationalcost.Underthisassumptionalltheraybeamsshotbytheantennaareconsideredtodeterminetheparametereventhoughtalotofthemcouldnotparticipate,asdiscussedinSec-tionII,tothefieldattheobservationpoint.Thecomputa-tionalcost,basedonthegeometricalcharacteristicsofthebeampropagation,canbeevaluatedusingthefollowingequa-tion
(B1)
withandbeingtheGOandUTDprocedurecom-putationalburden,respectively.In(B1),isgivenby
(B2)
where
isthetotalnumberofthecomputedGObeamsand
isthenumberofthesurfacesdescribingthefurnitureandtheenvironment.Thefactor3intheright-handsideof(B2)referstothechosenbeamimplementationthat,asexplainedinSectionII,isbasedonthreeelectromagneticrays.
Intheworstcase,
canbeevaluatedconsideringthenumberoftheelectromagneticbeamsshooting
fromthesource,andthenumber
ofthereflec-tion/transmissionprocessesallowedtocomputetheGOfield.Theresultingexpressionis
(B3)
Thetermappearingin(B3)canbeestimatedcon-sideringthesolidangleofthebeamsthathaveexperienced
successivebounces.Itsespressionis
(B4)
whereistherayaveragepathlengthbetweentwoconsec-utivebounces,andistheaveragesurfaceofthebeamcross-section.
Combining(B2),(B3),and(B4),theterm,appearingin
(B1)isgivenby
(B5)
Theterm
in(B1)canbeestimatedasfollows
(B6)
whereisthenumberoftheedgesegmentsexcitedby
theimpingingGOfield,and
isthetotalnumberofthecomputedscatteredbeamsforeachedgesegment.In(B6),
canbeevaluatedas
(B7)
where
istheaveragelengthoftheedgesdescribingtheobjectboundaries,
representsthenumberoftheallowedtransmission/reflectionprocessesfirstthattheGOfield
interactswithanedge,
istheaveragesideofthebeamcross-section.Thisparametercanberoughlyevaluatedas
(B8)
Theterm
in(B6)hasthefollowingexpression
(B9)
whereisthesubdivisionsnumberofthediffractedraytube,identifiedbythetwoKeller’sconeswhosetipscoin-cidewiththeextremesofthesegmentexcitedbytheincidentray
beam[seeFig.2(c)],and
representsthenumberoftheconsideredtransmission/reflectionprocessesinthecompu-tationofthediffractedfield.Theterm
appearingin(B9)canbeestimatedconsideringtheangledefiningthedif-fractedbeamsthathaveexperienced
successivebounces.Itsespressionisgivenby
(B10)
Finally,theterm
in(B1)canbeeasilyobtainedusing(B6)–(B10).Doingso,itresults
(B11)
From(B5)and(B11),itisevidentthatthebeam-tracingtech-niqueisadvantageouswithrespecttotheimagemethod[35]whenthenumberofthesurfacesdescribingtheenvironmentandofthefieldobservationpointsislarge.Inaddition,thepro-posedenhancedbeam-tracingtechniqueismoreefficientwithrespecttotheconventionalbroadcastmethod[1],because,asdiscussedinSectionII,notemployingareceptionsphere,itcanusealargerbeamcross-sectiontoobtainthesamefieldspatialresolution.
BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1519
ACKNOWLEDGMENT
TheauthorsgratefullyacknowledgeM.Fascettiforhishelpinthegraphicalpresentationoftheresults.
REFERENCES
[1]W.Honcharenko,H.L.Bertoni,J.L.Dailing,J.Quian,andH.D.Yee,
“MechanismsgoverningUHFpropagationonsinglefloorsinmodernofficebuildings,”IEEETrans.Veh.Technol.,vol.41,pp.496–504,Nov.1992.
[2]H.Hashemi,“Theindoorradiopropagationchannel,”Proc.IEEE,vol.
81,no.7,pp.943–968,July1993.
[3]R.J.C.Bultitude,P.Melançon,H.Zaghloul,G.Morrison,andM.
Prokki,“Thedependenceofindoorradiochannelmultipathcharacter-isticsontransmit-receiveranges,”IEEEJ.Select.AreasCommun.,vol.11,pp.979–990,Sept.1993.
[4]K.PahlavanandA.H.Levesque,“Wirelessdatacommunications,”
Proc.IEEE,vol.82,pp.1398–1430,Sept.1994.
[5]S.Y.SeidelandT.S.Rappaport,“Site-specificpropagationprediction
forwirelessin-buildingpersonalcommunicationsystemdesign,”IEEETrans.Veh.Technol.,vol.43,pp.879–1,Nov.1994.
[6]M.F.IskanderandZ.Yun,“Propagationpredictionmodelsforwireless
communicationsystems,”IEEETrans.MicrowaveTheoryTech.,vol.50,pp.662–673,Mar.2002.
[7]P.Bernardi,R.Cicchetti,andO.Testa,“EMC-orientedfieldprediction
forindoormicrowaveLANsystems,”presentedattheSymp.XXVIIthURSIGeneralAssembly,Maastricht,TheNetherlands,Aug.17–24,2002.
[8]P.Bernardi,M.Cavagnaro,R.Cicchetti,S.Pisa,E.Piuzzi,andO.Testa,
“AUTD/FDTDmodeltoevaluatehumanexposuretobase-stationantennasinrealisticurbanenvironments,”inProc.IEEEMTT-SInt.MicrowaveSymp.,Philadelphia,Pennsylvania,June8–13,2003,pp.403–406.
[9]C.L.Holloway,M.G.Cotton,andP.McKenna,“Amodelforpredicting
thepowerdelayprofilecharacteristicsinsidearoom,”IEEETrans.Veh.Technol.,vol.48,pp.1110–1120,July1999.
[10]T.Schöberl,“CombinedMonteCarlosimulationandraytracingmethod
ofindoorradiopropagationchannel,”inIEEEMTT-SInt.MicrowaveSymp.Dig.,NewYork,May16–20,1995,pp.1379–1382.
[11]M.KimpeandH.Leib,“Computerizedindoorradiochannelestimation
usingraytracing,”Ann.Telecommun.,vol.52,pp.251–263,May–June1997.
[12]C.Yang,B.Wu,andC.Ko,“Aray-tracingmethodformodelingindoor
wavepropagationandpenetration,”IEEETrans.AntennasPropagat.,vol.46,pp.907–919,June1998.
[13]S.ChenandS.Jeng,“AnSBR/imageapproachforradiowaveprop-agationinindoorenvironmentswithmetallicfurniture,”IEEETrans.AntennasPropagat.,vol.45,pp.98–106,Jan.1997.
[14]C.ChiuandC.Wang,“Impactofshapesofbuildingsandmetallicfurni-tureonindoormultipathenvironmentandbit-errorrateperformanceofmillimeter-wavechannels,”MicrowaveOpt.Technol.Lett.,vol.19,no.2,pp.137–142,Oct.5,1998.
[15]V.Degli-Esposti,G.Lombardi,C.Passerini,andG.Riva,“Wide-band
measurementandray-tracingsimulationofthe1900-MHzindoorpropa-gationchannel:Comparisoncriteriaandresults,”IEEETrans.AntennasPropagat.,vol.49,pp.1101–1110,July2001.
[16]J.H.Tarng,W.R.Chang,andB.J.Hsu,“Three-dimensionalmodeling
of900-MHzand2.44-GHzradiopropagationincorridors,”IEEETrans.Veh.Technol.,vol.46,pp.519–527,May1997.
[17]R.P.Torres,L.Valle,M.Domingo,S.Loredo,andM.C.Diez,“Cin-door:Anengineeringtoolforplanninganddesignofwirelesssystemsinenclosedspaces,”IEEEAntennasPropagat.Mag.,vol.41,pp.11–22,Aug.1999.
[18]F.S.deAdana,O.G.Blanco,I.G.Diego,J.P.Arriaga,andM.F.Cát-edra,“Propagationmodelbasedonraytracingforthedesignofper-sonalcommunicationsysteminindoorenvironments,”IEEETrans.Veh.Technol.,vol.49,pp.2105–2112,Nov.2000.
[19]R.G.KouyoumjianandP.H.Pathak,“Auniformgeometricaltheory
ofdiffractionforaedgeinaperfectlyconductingsurface,”Proc.IEEE,vol.62,no.11,pp.1448–1461,Nov.1974.
[20]W.D.BurnsideandK.W.Burgener,“Highfrequencyscatteringbythin
losslessdielectricslab,”IEEETrans.AntennasPropagat.,vol.31,pp.104–110,Jan.1983.
[21]K.A.ChamberlinandR.J.Luebbers,“AnevaluationofLongley-Rice
andGTDpropagationmodels,”IEEETrans.AntennasPropagat.,vol.30,pp.1083–1098,Nov.1982.
[22]P.Bernardi,R.Cicchetti,andO.Testa,“Athree-dimensionalUTD
heuristicdiffractioncoefficientforcomplexpenetrablewedges,”IEEETrans.AntennasPropagat.,vol.50,pp.217–224,Feb.2002.
[23]Z.Zhang,R.K.Sorensen,Z.Yun,M.F.Iskander,andJ.F.Harvey,“A
ray-tracingapproachforindoor/outdoorpropagationthroughwindowstructures,”IEEETrans.AntennasPropagat.,vol.50,pp.742–748,May2002.
[24]P.Bernardi,R.Cicchetti,andO.Testa,“AUTD-modelforfieldcom-putationinindoorradiocommunications,”inProc.Symp.XXVIthURSIGeneralAssembly,Ontario,Canada,Aug.13–21,1999,p.131.[25],“Anelectromagneticcharacterizationofindoorradioenvironment
inmicrowaveWLANsystems,”inIEEEMTT-SInt.MicrowaveSymp.Dig.,Phoenix,AZ,May20–25,2001,pp.1101–1104.
[26]W.C.Chew,WavesandFieldsinInhomogeneousMedia.NewYork:
IEEEPress,1995.
[27]AntennaHandbook,Y.T.LoandS.W.Lee,Eds.,Van-NostrandRein-hold,NewYork,1988.
[28]G.A.Deschamps,“Raytechniquesinelectromagnetics,”Proc.IEEE,
vol.60,pp.1022–1035,Sept.1972.
[29]G.Durgin,N.Patwary,andT.S.Rappaport,“Improved3Dray
launchingmethodforwirelesspropagationprediction,”Electron.Lett.,vol.33,no.16,pp.1412–1413,July1997.
[30]W.LuandK.T.Chan,“Advanced3Draytracingmethodforindoor
propagationprediction,”Electron.Lett.,vol.34,no.12,pp.1259–1260,June11th,1998.
[31]R.P.Torres,S.Loredo,L.Valle,andM.Domingo,“Anaccurateandeffi-cientmethodbasedonray-tracingforthepredictionoflocalflat-fadingstatisticsinpicocellradiochannels,”IEEEJ.Select.AreasCommun.,vol.19,pp.170–178,Feb.2001.
[32]L.J.Greenstein,D.G.Michelson,andV.Erceg,“Moment-methodesti-mationoftheRiceanK-factor,”IEEEComm.Lett.,vol.3,pp.175–176,June1999.
[33]S.Kim,H.L.Bertoni,andM.Stern,“Pulsepropagationcharacteristics
at2.4GHzinsidebuildings,”IEEETrans.AntennasPropagat.,vol.45,pp.579–592,Aug.1996.
[34]G.D.Durgin,T.S.Rappaport,andD.A.deWolf,“Newanalytical
modelsandprobabilitydensityfunctionsforfadinginwirelesscommu-nications,”IEEETrans.Commun.,vol.50,pp.1005–1015,June2002.[35]T.Huschka,“Raytracingmodelsforindoorenvironmentsandtheircom-putationalcomplexity,”inProc.IEEEPersonal,Indoor,andMobileRadioCommunicationSymp.PIMRC’94,TheHague,TheNetherlands,Sept.18–22,1994,pp.486–490.
PaoloBernardi(M’66–SM’73–F’93–LF’01)wasborninCivitavecchia,Italy,in1936.HereceivedtheelectricalengineeringandLiberaDocenzadegreesfromtheUniversityofRome“LaSapienza,”Rome,Italy,in1960and1968,respectively.
Since1961,hehasbeenwiththeDepartmentofElectronics,UniversityofRome“LaSapienza,”wherehebecameaFullProfessorin1976andwasDirectoroftheDepartmentofElectronicsfrom1982to1988.HewasVice-ChairmanoftheEuropeanCommunityCOSTProject244onBiomedical
EffectsofElectromagneticRadiationfrom1993to1997,ProjectCoordinatoroftheEuropeanCommunityProjectCEPHOS,devotedtoEMdosimetryandcompliancewithstandardsofmobilecellularphones,from1998to2000,andfrom2001to2004,hehasbeentheScientificCoordinatoroftheItaliannationalprojectdevotedtotheprotectionofpeopleandenvironmentfromtheEMemissions.Hehasauthoredover190scientificpapersandnumerousinvitedpresentationsatinternationalworkshopsandconferences.Currently,heisanEditorialBoardmemberforMicrowaveandOpticalTechnologyLetters.HewastheGuestEditoroftheAltaFrequenzaSpecialIssueonNonionizingElectromagneticRadiation(March1980)andtheWirelessNetworksSpecialIssueonExposureHazardsandHealthProtectioninPersonalCommunicationServices(Dec.1997).HisresearchhasdealtwiththepropagationofEMwavesinferrites,microwavecomponents,biologicaleffectsofEMwaves,andEMcompatibility.
Dr.BernardiisaMemberoftheBioelectromagneticsSociety(BEMS),Eu-ropeanBioelectromagneticsAssociation(EBEA),and“SocioFedele”oftheItalianElectricalandElectronicSociety(AEI).HewasChairmanoftheIEEEMiddleandSouthItalySectionfrom1979to1980andtheInternationalSci-entificRadioUnion(URSI)CommissionKonElectromagneticsinBiologyandMedicinefrom1993to1996.HewasarecipientoftheIEEECentennialMedalin1984andwaselectedFellowoftheIEEEfor“contributionstomi-crowaveinteractionswithbiologicalsystems,”in1993.HewasanAssociateEditorfortheURSIRadioScienceBulletinandanEditorialBoardMemberforIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES.
1520IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004
RenatoCicchetti(S’83–M’83–SM’01)wasborninRieti,Italy,inMay1957.HereceivedtheLaureade-greeinelectronicsengineering(summacumlaude)fromtheUniversityofRome“LaSapienza,”Rome,Italy,in1983.
From1983to1986,hewasanAntennaDesigneratSeleniaSpazioS.p.A.(nowAleniaAerospazioS.p.A.),Rome,Italy,wherehewasinvolvedinstudiesontheoreticalandpracticalaspectsofan-tennasforspaceapplicationandscatteringproblems.From1986to1994,hewasaResearcher,andfrom
1994to1998,hewasanAssistantProfessorattheDepartmentofElectronicsEngineering,UniversityofRome“LaSapienza,”whereheiscurrentlyanAssociateProfessor.In1998,hewasVisitingProfessorattheMotorolaFloridaCorporateElectromagneticsResearchLaboratory,FortLauderdale,FL,whereOrlandinoTestawasborninAugust1972,inMinturno,Italy.Hereceivedtheelectronicengi-neeringdegree(cumlaude)andthePh.D.degreefromtheUniversityofRome“LaSapienza”,Rome,Italy,in1997and2003,respectively.
Since2001,heisahighschoolTeacherattheI.T.I.S.“G.Armellini”InstituteofRome,whereheisinvolvedinteachingelectronicsandtelecommu-nications.HeisalsocurrentlycollaboratingwiththeDepartmentofElectronicEngineering,UniversityofRome“LaSapienza.”Atpresent,heisstudying
high-frequencymodelsfortheanalysisofcomplexindoorradioenvironmentswithparticularattentiontoEMC/EMIproblems.Hismainresearchinterestsarepropagationandradiationofelectromagneticfields,electromagneticcom-patibility,microwaveandmillimeter-waveintegratedcircuits,andantennas.
hewasinvolvedwithantennasforcellularandwirelesscommunications.Presently,heiscoordinatoroftheactivity“EMC/EMIcharacterizationofanairportenvironmentinpresenceofcomplexelectromagneticsources”oftheItaliannationalproject2001to2004MIUR/CNR-ENEA,devotedtotheprotectionofpeopleandenvironmentfromEMemissions.HealsoservesasaReviewerofseveralscientificjournals.Hiscurrentresearchinterestsincludeelectromagneticfieldtheory,asymptotictechniques,electromagneticcompatibility,wirelesscommunications,microwaveandmillimeter-waveintegratedcircuits,andantennas.HeislistedinMarquisWho’sWhointheWorldandWho’sWhoinScienceandEngineering.
Dr.CicchettiisaMemberoftheItalianElectricalandElectronicSociety(AEI).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务