您好,欢迎来到测品娱乐。
搜索
您的当前位置:首页An UTD Model for the Analysis of Complex Indoor Radio Environments in Microwave WLAN Systems

An UTD Model for the Analysis of Complex Indoor Radio Environments in Microwave WLAN Systems

来源:测品娱乐
IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE20041509

AnAccurateUTDModelfortheAnalysisofComplexIndoorRadioEnvironmentsin

MicrowaveWLANSystems

PaoloBernardi,LifeFellow,IEEE,RenatoCicchetti,SeniorMember,IEEE,andOrlandinoTesta

Abstract—Anaccurateuniformtheoryofdiffraction(UTD)modelfortheanalysisofcomplexindoorradioenvironments,inwhichmicrowaveWLANsystemsoperate,ispresented.ThemodelemploysaheuristicUTDcoefficientsuitabletotakeintoaccounttheeffectsofbuildingfloors,walls,windows,andthepresenceofmetallicandpenetrablefurniture.Anumericaltoolbasedonanenhancedtridimensionalbeam-tracingalgorithm,whichincludesdiffractionphenomena,hasbeendevelopedtocomputethefielddistributionwithahighdegreeofaccuracy.Afterthevalidationofthemodel,obtainedbymeansofsomecomparisonswithmeasurementsavailableinliterature,anaccurateelectromag-neticcharacterizationoftypicalindoorenvironmentshasbeenperformed.Thenumericalresultsshowthattheelectromagneticfielddistributionandthechannelperformancesaresignificantlyinfluencedbythediffractionprocessesarisingfromthepresenceoffurniture.

IndexTerms—Indoorradiopropagation,wirelessLANsystems,penetrableobjects,electromagneticscattering,heuristicdiffrac-tioncoefficient,beamtracing.

I.INTRODUCTION

T

HEPERFORMANCESofmodernwirelesscommunica-tionsystemsstronglydependontheelectromagneticchar-acteristicsoftheenvironmentinwhichtheyoperate.Thisas-pectisparticularlyimportantforcellularphones,wirelesslocalareanetworks(WLANs)andpersonalcommunicationsystemsoperatingincomplexenvironments(buildings,factories,hospi-tals,railwaystations,airports,etc.).Intheseenvironmentsthefieldpropagationisdominatedbymanyscatteringprocessesduetoobstacles(walls,openings,furniture,etc.),therefore,manywavesarriveatthemobilereceiverfromdifferentdirectionsandwithdifferenttimedelays[1]–[6].Inaddition,thepresenceofhumanbeings,electronicapparatusandsensibleequipmentsre-quiresthatWLANsystemsguaranteeelectromagneticcompat-ibility(EMC)requirements.TosatisfybothsystemandEMCrequirementsitisnecessarythepreliminaryevaluation,directlyduringthedesignphase,ofthefieldcoverage,theperformancesoftheradiochannel,andthepotentialEMC/electromagneticin-terference(EMI)problems[7],[8].Tothisend,toovercomeex-

ManuscriptreceivedNovember20,2001;revisedJuly14,2003.ThisworkwassupportedbytheItalianMinistryforUniversityandScientificandTechno-logicalResearch(MURST)underContractENEA2001/10100/D23“Protectionofhumanbeingsandenvironmentagainstelectromagneticemissions.”

TheauthorsarewiththeUniversityofRome“LaSapienza,”De-partmentofElectronicEngineering,18-00184Rome,Italy(e-mail:bernardi@mail.die.uniroma1.it;cicchetti@mail.die.uniroma1.it).DigitalObjectIdentifier10.1109/TAP.2004.830260

pensivemeasurementcampaigns,anumericalpredictiontooltoinvestigatetheelectromagneticpropagationcharacteristicscanbeusefullyemployed.

Inthelastfewyears,predictionmodels,suitabletoanalyzeindoorradioenvironments,bothemptyandwithmetallicfurni-ture,havebeenpresented[5],and[9]–[18].Anempiricalmodelhasbeenproposedin[9]toevaluatethepowerdelayprofilewithinemptyindoorenvironments.Ageometricaloptics(GO)modelhasbeenusedin[10]–[12]topredictthefielddistributioninemptyindoorenvironments,whilein[13]–[15]themetallicuniformtheoryofdiffraction(UTD)coefficient[19]hasbeenemployedtomodelthescatteringarisingfrommetallicfurni-ture.Finally,in[5],and[16]–[18]thefieldscatteredbysimplepenetrablewedges,modelingindoorpartitions,havingalocalinteriorwedgeanglelessthanhasbeentakenintoaccountbymeansoftheheuristicdiffractioncoefficientsproposedin[20],[21].Asdiscussedin[22],suchcoefficientscanbeemployedonlyforalimitedclassofpenetrablestructuresandforparticularincidencesituations.Therefore,penetrablefurnitureandjunc-tionsbetweenpartitionscannotbeadequatelymodeled.Sincethefieldpropagationinindoorenvironmentscanbeconsider-ablyinfluencedbythepresenceoftheseconstituents[6],[23],itisnecessarytoemploysuitableelectromagneticfieldpredictionmodelsforarealisticevaluationoftheradiochannelcharacter-isticsandtheidentificationofzoneswherethefieldstrengthex-ceedsspecificthresholds.Acomprehensivereviewofthestateofartconcerningthepropagationpredictionmodelsforwirelesscommunicationsystemshasbeenrecentlypublishedin[6].Inthispaper,ahigh-frequencymodeltoanalyzecomplexin-doorenvironments,inwhichWLANsystemsoperate,ispre-sented.Themodel,basedonanenhancedbeam-tracingalgo-rithm,employsanewheuristicdiffractioncoefficienttoeval-uatethefieldinteractionwithpenetrableobjects.Suchcoeffi-cient,derivedusingthemethodologyproposedin[22],ispar-ticularlyusefultomodeltypicalindoorscenariosandprovidesanaccuratedescriptionofthescatteredfield[24],[25],yieldingphysicalinsightintothemechanismsresponsibleforthemulti-pathphenomenon.

Theformatofthispaperisasfollows.Themodelsadoptedforthehigh-frequencyfieldpredictionandfortheevaluationoftheradiochannelparametersaredescribedinSectionsIIandIII,respectively.InSectionIV,afterapreliminaryanalysistovali-datetheproposedmodelandtoestablishitsaccuracy,numericalresultsconcerningthefieldcoverageandchannelperformancesofsometypicalindoorenvironmentsarepresented.

0018-926X/04$20.00©2004IEEE

1510IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004

II.HIGH-FREQUENCYFIELDPREDICTIONMODEL

Themodeladoptedtopredictthehigh-frequencyfieldisbasedontheUTD.Theelectromagneticfieldisrepresentedintermsofdiffractedandray-opticalfields.Thevariouselementsoftheenvironmentaremodeledasjunctionsofthinflatmulti-stratelossy/losslessstructures[17].Thegeometricoptics(GO)fieldiscomputedbymeansofreflectionandtransmissiondyadics[26],whilethediffractedfieldisevaluatedbymeansofasuitableUTDheuristicdyadicdiffractioncoefficientderivedusingthemethodologyproposedin[22].Theadopteddiffractioncoefficientaccuratelymodelsthefieldinteractionwithedgesandjunctionsbetweenthinflatplatesofdifferentmaterials,sothatallthesignificantfieldprocesseswhichtakeplaceintheenvironmentarerigorouslymodeled.Sinceinindoorenvironmentsthefieldcontributionsarisingfromdoublediffractionaresmall[13],[16],onlyasinglediffractionprocessisconsidered.Accordingtothehigh-frequencyapproximation,theradiosourceismodeledusingitsvector-effectiveheighttodescribethegainpatternandthepolarizationproperties[27].Forcompletenessandforreader’sconvenience,thefieldpre-dictionproceduredescribedaboveisoutlinedinAppendixA.A.HeuristicDiffractionCoefficientforJunctionsFormedbyThinDielectricPlates

Theheuristicdiffractioncoefficient,derivedhereaccordingtothemethodologyproposedin[22],issuitabletoanalyzethefieldpropagationinindoorenvironmentsandtosolveawideva-rietyofelectromagneticscatteringproblemssuchasthosecon-cerningradartargetdetection,andradiationpatternsofantennasmountedonaircraft,shipsandbuildings.Sincethediffractioncoefficientforthevariousjunctionssuitabletomodelrealisticenvironmentscanbederivedinthesameway,onlythederiva-tionofthatconcerninga-junctionformedbythreethindielec-tricplates(seeFig.1)ispresentedbelow.

Assumingthattheincidentelectricfield

consistsofasphericalwavepropagatinginthe

direction,thehigh-fre-quencyelectricfield

scatteredfromthejunctionisgivenby(1)

whereisthespreadingfactor[28],

isthedyadicdiffractioncoefficient,andistheopticalpath

lengthfromthediffractionpoint

totheobservationpoint.Intheglobalreferencesystemformedbytheunit-vectors

,and(seeFig.1),theunit-vectorsdefiningthepropaga-tiondirectionfortheincidentandthediffractedraysareexpressedby

(2)(3)

where,andaretheusualsphericalangles.

WithreferencetotheincidencesituationshowninFig.1(b),thesphericalangleswhichidentifythecharacteristicopticraysontheKeller’scone,acrosswhichtheGOfieldisdiscontinuous,are

(4)

Fig.1.FielddiffractedfromaT-junctionformedbythreethinflatdielectricplateshavingdifferentelectricalcharacteristics.(a)Three-dimensionalviewand(b)crossview.Theray-basedreferencesystemsadoptedtodefinetheincidentandthescatteredfieldsareshown.

(5)(6)(7)

Consequently,theheuristicdyadicdiffractioncoefficient,de-rivedaccordingtothemethodologypresentedin[22],takes

BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1511

Fig.2.(a)BeamsshootingfromaTxantenna.Eachbeamisformedbythreerays.(b)Beamsplittingadoptedwhenabeamimpingesonathinplateedge.Theincidentbeamissubdividedintofourbeams.(c)DiffractedbeamsshootingfromthesegmentABbelongingtoathinplateedgeexcitedbyanincidentbeam.Thediffractedraytubeissubdividedinbeamshavingtriangularcrosssection.

thefollowingformshownin(8)atthebottomofthepage,

(with),andarethejumpwhere

indicator,thetransitiondyadicfunctions,andthe-fieldraytransferdyadrelatedtothethcharacteristicopticray,respec-tively[22].

In(8),thejumpindicatorsassumethefollowingvalues:

andbeingthewith

scalarcoefficientsforthesoftandhardpolarization,respec-tively[22].Theunit-vectorsdefiningthedyadsin(10)aregivenby

(11)(12)(13)(14)

where

(9)

andthetransitiondyadicfunctionstaketheform

(10)(15)

(8)

1512IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004

withbeingtheunit-vectorofthethcharacteristicopticray.

Finally,the-fieldraytransferdyads

appearingin(8)arecomputedas

(16)(17)(18)

(19)

(20)

with

(21)

and

(22)

Intheaboveexpressions,andarethereflectionandtransmissioncoefficientsforathinflatdielectricplate,respectively[26].Theunit-vectorsappearingin(16)–(20)

definetheusualparallel

andorthogonalfieldpolariza-tion.

B.TheBroadcastBeam-TracingAlgorithm

Thebeam-tracingmethod,employingthebroadcasttech-nique[1],[5],[12],[13],and[24]isusedforthecomputationoftheelectromagneticfieldandthecharacteristicsoftheradiochannel.Anenhancedversionofthistechniquehasbeendevelopedinthispaperinordertoimprovethenumericalaccuracyandtheefficiency.

Twopartsformthenumericalalgorithm.Thefirst,deter-minestherayopticalpaths,thesecondtheelectromagneticfielddistribution.Thehigh-frequencyfieldpropagationisdescribedbymeansofelectromagneticraybeams.Inthecomputationalmodel,eachbeamisformedbythreeraysbelongingtotheedgesofaraytubehavingatriangularcrosssection.Thefieldradiatedfromtheantennaismodeledbymeansofbeamsshootingfromtheantennalocationtowardallspacedirections,independentlyoftheobservationpoint[Fig.2(a)].Togeneratebeamshavingaboutthesametriangularcrosssectionarea[Fig.2(a)],themethodproposedin[12]hasbeenadopted.Duringthepropagation,thebeamcanimpinge,totallyorpartially,onasurfacedescribingtheenvironment[Fig.2(b)],itcancapturetheobservationpoint,or,finally,itmaynotinterceptanyoftheenvironmentelements.Inthefirstcase,usingSnell’slaw,thetransmittedandthereflectedbeamsareevaluated.Ifthebeampartiallyimpingesonthesurface,itissplittedinnewbeamsinawaythattheytotallyintercept,ornot,thesurfaceunderconsideration[Fig.2(b)].Then,therayopticalpathsofthediffractedfieldaredetermined.Tothisend,asubdivisionofthediffractedraytube,identifiedbythetwoKeller’sconeswhosetips,AandB,aretheextremesofthesegmentexcitedbytheincidentraybeam[Fig.2(c)],isperformed.Ifthebeamdoesnotinterceptanyenvironment

Fig.3.Channelpowerdelayprofile.DistancebetweenTxandRx:(a)3.03mand(b)22.42m.Thesolidlinecorrespondstothecomputedresults,whiletheshort-dotlinestothemeasurementsreportedin[11].Frequency950MHz.

elements,itdoesnotproduceanysecondarybeams,and,con-sequently,itcomesoutfromthefieldcomputationprocedure.Thesamehappenswhenthebeamhasacrosssectionlessthanadefinitearea,oritcarriesafieldamplitudelessthanaspecificthreshold,or,finally,itexceedsamaximumnumberofpermissiblebounces.Foreachobservationpointlightedbythebeam,theexactraypathiscomputedbymeansoftheimagemethodusingonlythesurfacesthathaveinteractedwiththebeam.Doingso,themultiplecounterrortypicaloftechniquesbasedonthereceptionsphere[1],[29],[30]iscompletelyeliminated.Inaddition,theproposedcomputationproceduredoesnotsufferfromthefieldapproximationerrorthatoccursinthosetechniquesusingthereceptionsphere[1],[5]orinthoseemployingthecomputationofthebeammedian-ray[12].Inthesecondpartofthebeam-tracingalgorithmtheGOanddiffractedfieldsareevaluatedusingthereflection,transmission,anddiffractiondyadicsatthepointswheretheincidentfieldimpinges.Inthenumericalprocedure,onlytheedgediffractionprocessesexcitedbytheGOfieldhavebeentakenintoaccount.ToobtainahighnumericalaccuracythecomputationshavebeenperformedtakingintoaccounttheGOfieldcontributionsthathaveexperienceduptofivereflections/transmissions.The

BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1513

Fig.4.Firstfloorofabuildingformedbytwoidenticalstoreys.Eachfloorconsistsoftworoomsandacorridor.TheTxpointindicatesthelocationofthehalf-wavedipolereflectorantennaworkingat2.44GHzandradiating10mW.Thefurniturewithintheroomsareevidencedinbold.Woodencabinetsarelabeled1,metalliccabinetislabeled2.

diffractedfieldarisingfromanyscatteringobjectisconsideredexcitedeitherbythelineofsightGOfield,orbytheGOcontri-butionsthathaveexperienceduptothreereflections/transmis-sions.Finally,thediffractedfieldcontributionistakenintoac-countwhetheritreachestheobservationpointdirectlyorafterthreereflection/transmissionprocesses.

Toestimatethenumericalefficiencyoftheabovementionedalgorithm,anexpressionusefultoevaluateitscomputationalburdenisgiveninAppendixB.

III.RADIOCHANNELMODEL

Anaccuratedescriptionoftheindoorradiochannelisimpor-tantbecausemultipathpropagationandtimedispersionsignif-icantlyinfluencetheperformancesofWLANcommunicationsystems.Inthesesystems,theimpulseresponseiscomposedofsinglepulsesthathavetemporalspreadofthesameorderofthetimedelaybetweenadjacentechoes.ThissuggeststoemploytheTurin’smodelbasedonfinite-durationpulses[2],[3],[17],and[25],tomodelthechannelbehavior.Therefore,assumingthattheeffectofthetimedispersionforeachechocanbemod-eledasaGaussianpulse,thepowerdelayprofile[1],[2]oftheradiochannelcanbewrittenasfollows

(23)

where

(24)

isthenumberofraypathsthatcontributetothesignal.and

In(23)–(24),theparameters,andaremagnitude,phase,

TABLEI

MATERIALCHARACTERISTICS

andtimedelayofthethcontribution,respectively,andisthetimevarianceoftheGaussianpulse.Using(23),thermsmulti-whichestab-pathdelayspreadofthepowerdelayprofile

lishesthemaximumusablebitrateinadigitalcommunicationsystem[1],[2],iscomputedas

(25)

where

istheexcessmeandelay,definedas

(26)

Toderivetheparametersappearingin(23)theelectromagneticfieldduetothetransmittingantennaatthereceiverpointisfirstcomputed,thentheopen-circuitvoltageatthereceivingan-tenna,linkedtotheimpulseresponse,isevaluatedusingthean-tennavectoreffectiveheight[27].

1514IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004

Fig.5.Electricfieldmagnitudeat1mabovethefloorofthefirststorey.Emptyroomscase.Frequency2.44GHz.

Fig.6.Electricfieldmagnitudeat1mabovethefloorofthefirststorey.Furnishedroomscase.Frequency2.44GHz.

IV.NUMERICALRESULTS

Tovalidatetheproposedmodelsomenumericalcomparisonswithresultspublishedinliteraturehavebeenpreliminarlyper-formed.Afirstvalidation,concerningthefieldpredictioninanemptycorridor,wasreportedin[25].Inthispaper,afurtherval-idationconcerningthepowerdelayprofileofacommunicationsystemworkinginamorecomplexenvironmenthasbeenper-formed.Theconsideredcasereferstotheindoorcommunicationsystemanalyzedin[11].Suchsystemconsistsoftwoomnidi-rectionaldisconeantennasoperatingat950MHzandlocatedat1.51mabovethefloor.Theroomwheretheantennasarelo-catedhasdimensions14.2431.123.3m.Theroomfloorandwallsaremadeofconcreteblockswithoutreinforcingsteel,whiletheconvexwoodenroofishiddenbyastippledceilingmadeofdrywallsheeting.Theroomwasemptyexceptforchairsandkitchenappliancesthatwerecollectedalongthewalls.Theimpulseresponsemeasurementsystemhasatemporalresolu-tionof25ns.Asin[11],sincetheinformationaboutdoors,win-dows,chairsandkitchenapplianceswereomitted,theindoorenvironmenthasbeenmodeledasanemptyparallelepipedalroomwith16cmthickwalls.Theparametersofthematerialsformingtheroomwalls,ceiling,andfloor,determinedtuningthenumericalresultswiththemeasurementsgivenin[11],are

mS/mforthefloor,theceilingandthelong

mS/mfortheshortwalls.Thecom-walls,and

putedresults,showninFig.3(a),areingoodagreementwiththeexperimentalmeasurements.Usingthesameparameters,afurthercomparison[Fig.3(b)]concerningthepowerdelaypro-filemeasuredinadifferentpointwithintheroomhasbeenper-formed.Asitcanbenoticed,theagreementisstillgood.

Afterthenumericalvalidation,theelectromagneticfielddis-tributionandtheradiochannelcharacteristicshavebeencarriedoutformorecomplexindoorenvironments.Forbrevity’ssakeonlyarepresentativeexampleisreported.

InFig.4,thefirstfloorofabuildingformedbytwoidenticalstoreys,wherea2.44GHzWLANsystemoperates,isshown.Theroomsareprovidedwithwoodentablesanddoors,woodenandmetalliccabinets,andglasswindows.ThecharacteristicsofthematerialsusedinthenumericalcomputationsaregiveninTableI.Theradiatingsystem,locatedattheTxpoint,consistsof

dipolereflectorantennaradiating10averticallypolarized

mW.Thefieldcomputationzoneisthehorizontalplaneat1mabovethefloor.Thepowerreceivedfromaverticallyoriented

dipoleantenna(Rx)hasbeenevaluatedalongthe-ori-entedlinescrossingthecenterofthetableslocatedatthefirstfloor.Theparameterofthecommunicationsystemhasbeenassumedof1ns.Suchavalueistypicalofagoodmeasurementsystemsuitabletodeterminethechannelimpulseresponse.ThemagnitudeoftheelectricfielddistributionatthefirstfloorofthebuildingisshowninFigs.5(emptyrooms)and6(furnishedrooms).Inthesefiguresthefastandslowmultipathfadingduetothescatteringprocessescausedbythefurnitureiswellevident.Inaddition,inthecorridorandinthesecondroomsignificantfieldlevelsduetothetransmissionthroughthepar-titionscanbenoticed.Theselevelshavemeanvaluesofabout

dBlessthanthoseintheroomcontainingtheRFsource.

Thespatialfielddistributiononthesecondstoreyissimilartothatobservedonthefirstfloor,whilethelevelsarelowerof

dBduetothesubstantialattenuationcausedbyabout

thetransmissionthroughtheceilingofthefirstfloor(seeFig.7).

BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1515

Fig.7.Electricfieldmagnitudeonaverticalsectionatx=5mwithfurnishedrooms.Frequency2.44GHz.

Fig.9.Cumulativedistributionfunctionofthereceivedsignalmagnitude.Antennascharacteristics:Tx(3.05m,4.52m,2.60m),half-wavedipolereflectorantenna;(Room1)Rx(5.24m,6.24m,1.00m),(Room2)Rx(5.24m,11.25m,1.00m),half-wavedipoleantenna.Frequency2.44GHz.

Fig.8.NormalizedpowerreceivedfromtheRxlocatedatthefirstfloor,versusdistancex.Antennascharacteristics:Tx(3.05m,4.52m,2.60m),half-wavedipolereflectorantenna;(a)Rx(x,6.24m,1.00m),(b)Rx(x,11.25m,1.00m),half-wavedipoleantenna.Frequency2.44GHz.Dotverticallinesindicatethelocationoftheinternalroomwallandthetableedges.

InFig.8(a)and(b),thepowerreceivedfromtheRxantennamovedalongthe-orientedlinelocatedatthecenteroftheta-blesinthetworoomsisshown.Asitcanbeobserved,thedif-fractedfieldhasasignificanteffectparticularlyevidentinthe

nonline-of-sight(NLOS)zoneandneartheedgesoftheobjectswherethediffractedfieldbecomesdominant.ThemeanlevelofthepowerreceivedbytheRxinthesecondroomisabout

dBlowerthanthatreceivedbytheRxintheroomcontainingtheradiosource,inagreementwiththefieldlevelsshowninFig.5(b).

Usingthepowerreceivedalongan-orientedsegmentof

,centeredatthecenterofthetables,andchoosing,length

,anestima-assuggestedin[31],asamplingrateofabout

tionofthelocalfastfadingstatisticshasbeenperformed.Todothat,theprocedureproposedin[32]hasbeenadopted.Fig.9,showsthecumulativedistributionfunctionofthereceivedsignalmagnitudecomputedinthetworooms.Asitcanbeobservedthecomputedcurvesareinexcellentagreementwiththoseob-tainedusingtheRiciandistribution.Inparticular,weobservethatintheroom1,containingtheradiosource,thestatisticsis

,describedbymeansofaRiciandistributionhaving

whileintheroom2(NLOSregion)theRiciandistributionex-hibitsa-factorofabout1.59,whichis,asobservedin[2],[33],and[34],veryclosetotheRayleighdistributionfunction.ThermsdelayspreadevaluatedalongthesamelineofFig.8(a)isshowninFig.10(a)[emptyrooms]and(b)

1516IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004

Fig.10.RMSdelayspreadversusdistance.Turin’smodelbasedonGaussianpulseshaving󰀛=1ns:(a)emptyrooms,(b)and(c)furnishedrooms.AntennacharacteristicsasinFig.8.Dotverticallinesindicatethelocationoftheinternalroomwallandthetableedges.

[furnishedrooms],whilethermsdelayspreaddepictedinFig.10(c)isthatcomputedinthesecondroomalongthesamelineofFig.8(b).Comparingthesecurves,itisevident,almosteverywhere,thereductionofthermsspreadduetothefieldinteractionwithpenetrablefurniture.Inparticular,Fig.10(b)showsthatintheline-of-sight(LOS)regionthefieldscatteredfromthefurnitureisresponsibleforanimprovementofthechannelperformances,whileadifferentbehaviorisobservedintheNLOSregionsasitisconfirmedinFig.10(c).Infact,sinceintheseregionstheGOanddiffractedfieldlevelscanresultcomparable,thediffractiveeffectsimprovethechannelcharacteristicsonlyinspecificzones.Itisinterestingtonotethat,incontrasttotheresultsbasedontheGaussianpulsemodel[Fig.10(a)],thosebasedonthedeltaTurin’smodel[1],[2]predictasignificantincrementofthermsdelayspreadbothintheLOSandintheNLOSregions(seeFig.11).

Finally,inFig.12thechannelpowerdelayprofilecomputedwiththeRxplacedclosetothecenterofthetableinthefirstandinthesecondroomisshown.Comparingthesefigures,itisofinteresttonotethatincontrastwiththeLOScase[Fig.12(a)],intheNLOScase[Fig.12(b)]theleadingechoisnotthefirstthatappearsinthepowerdelayprofile.Thismeansthattheelectro-magneticraypathalongwhichthepathlossisminimumisnot

Fig.11.RMSdelayspreadversusdistance.Turin’smodelbasedondeltapulses.AntennacharacteristicsasinFig.8.Dotverticallinesindicatethelocationoftheinternalroomwallandthetableedges.

theshortest.Consequently,thermsspreadisgreaterthanthatcomputedintheroomcontainingtheradiosource.

Inconclusion,fromtheanalysisofthenumericalresultsitappearsthatthepresenceofpenetrablefurnitureintheLOSre-

BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1517

Fig.12.Normalizedchannelpowerdelayprofile.Turin’smodelbasedonGaussianpulseshaving󰀛=1ns.Antennascharacteristics:Tx(3.05m,4.52m,2.60m)half-wavedipolereflectorantenna;(a)Rx(5.24m,6.24m,1.00m),(b)Rx(5.24m,11.25m,1.00m),half-wavedipoleantennas.Frequency2.44GHz.Thecomputedrmsspreadisalsoindicated.

gion,givingrisetogreaterfielddiffusion,isresponsibleforareductionofthelevelsofthereceivedsignalechoes.Thiseffectimprovesthechannelperformancesofawirelesscommunica-tionsystemasconfirmedfrommeasurementsreportedinliter-ature[3].

V.CONCLUSION

AUTDmodelfortheanalysisofcomplexindoorradioen-vironments,inwhichmicrowaveWLANsystemsoperate,hasbeenpresented.ThediffractionphenomenahavebeentakenintoaccountbymeansofasuitableUTDheuristicdiffractioncoef-ficientforpenetrableobjects.Themodelemploysanenhancedthree-dimensionalbeam-tracingalgorithmtocomputethefielddistributionandthechannelcharacteristicswithanadequatede-greeofaccuracy.Usingtheproposedmodel,theperformancesofmicrowavewirelesscommunicationsystemsoperatinginre-alisticindoorenvironmentshavebeenanalyzed.Aninvestiga-tionofthepropagationprocessesshowsthattheelectromagneticfielddistributionandthecharacteristicsoftheradiochannelaresignificantlyinfluencedbythediffractionphenomenadueto

Fig.13.Structureformedbyathinflatpenetrableplatelocatednearapartiallyreflectingplane.PandPindicatethesourceandtheobservationpoint,respectively.TheopticalraysexcitedbytheincidentelectricfieldEareindicated.

thepresenceofthefurniture.Inparticular,ithasbeenobservedthat,almosteverywhereintheLOSregion,thefieldscatteredfrompenetrablefurnitureisresponsibleforareductionofthermsdelayspread,whilethisparticulareffectisnotgenerallyobservableintheNLOSregion.Duetoitsnumericalaccuracyandlimitedcomputationalrequirements,theproposedmodelcanbesuccessfullyemployedtoestimatethechannelperfor-mances,thefielddistribution,andpotentialEMCproblemsdi-rectlyduringthedesignphaseofanindoorwirelesscommuni-cationsystem.

APPENDIXA

Inordertooutlinethehigh-frequencyfieldpredictionproce-dureadoptedinthepaper,inFig.13arepresentativestructureformedbyathinflatpenetrableplatelocatednearapartiallyre-flectingplane,excitedbyanincidentelectricfield,isshown.Tosimplifythegraphicalrepresentation,onlytheraysthathaveexperienceduptotwointeractionsaretakenintoaccount.WithreferencetothefieldprocessesshowninFig.13,theelectricfieldattheobservationpointisgivenbythesumofthefol-lowingcontributions.a)DirectRayField:

(A1)

b)ReflectedRayField:

(A2)

c)TransmittedandReflectedRayField:

(A3)

d)DiffractedRayField:

(A4)

1518IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004

e)DiffractedandReflectedRayField:

(A5)

In(A1)–(A5),isthewavenumberandistheoptical

pathlengthbetweenthepointsand.

APPENDIXB

Thecomputationalburdenoftheimplementedbeamtracingmethod,basedonalinearcostalgorithmtosearchthenearestsurfacethatishitfromtheray,isderivedconsideringtheray-surfaceintersectionprocessasthebasiccostelement.Asin[35],theworstcasesituationisconsideredtodeterminethecompu-tationalcost.Underthisassumptionalltheraybeamsshotbytheantennaareconsideredtodeterminetheparametereventhoughtalotofthemcouldnotparticipate,asdiscussedinSec-tionII,tothefieldattheobservationpoint.Thecomputa-tionalcost,basedonthegeometricalcharacteristicsofthebeampropagation,canbeevaluatedusingthefollowingequa-tion

(B1)

withandbeingtheGOandUTDprocedurecom-putationalburden,respectively.In(B1),isgivenby

(B2)

where

isthetotalnumberofthecomputedGObeamsand

isthenumberofthesurfacesdescribingthefurnitureandtheenvironment.Thefactor3intheright-handsideof(B2)referstothechosenbeamimplementationthat,asexplainedinSectionII,isbasedonthreeelectromagneticrays.

Intheworstcase,

canbeevaluatedconsideringthenumberoftheelectromagneticbeamsshooting

fromthesource,andthenumber

ofthereflec-tion/transmissionprocessesallowedtocomputetheGOfield.Theresultingexpressionis

(B3)

Thetermappearingin(B3)canbeestimatedcon-sideringthesolidangleofthebeamsthathaveexperienced

successivebounces.Itsespressionis

(B4)

whereistherayaveragepathlengthbetweentwoconsec-utivebounces,andistheaveragesurfaceofthebeamcross-section.

Combining(B2),(B3),and(B4),theterm,appearingin

(B1)isgivenby

(B5)

Theterm

in(B1)canbeestimatedasfollows

(B6)

whereisthenumberoftheedgesegmentsexcitedby

theimpingingGOfield,and

isthetotalnumberofthecomputedscatteredbeamsforeachedgesegment.In(B6),

canbeevaluatedas

(B7)

where

istheaveragelengthoftheedgesdescribingtheobjectboundaries,

representsthenumberoftheallowedtransmission/reflectionprocessesfirstthattheGOfield

interactswithanedge,

istheaveragesideofthebeamcross-section.Thisparametercanberoughlyevaluatedas

(B8)

Theterm

in(B6)hasthefollowingexpression

(B9)

whereisthesubdivisionsnumberofthediffractedraytube,identifiedbythetwoKeller’sconeswhosetipscoin-cidewiththeextremesofthesegmentexcitedbytheincidentray

beam[seeFig.2(c)],and

representsthenumberoftheconsideredtransmission/reflectionprocessesinthecompu-tationofthediffractedfield.Theterm

appearingin(B9)canbeestimatedconsideringtheangledefiningthedif-fractedbeamsthathaveexperienced

successivebounces.Itsespressionisgivenby

(B10)

Finally,theterm

in(B1)canbeeasilyobtainedusing(B6)–(B10).Doingso,itresults

(B11)

From(B5)and(B11),itisevidentthatthebeam-tracingtech-niqueisadvantageouswithrespecttotheimagemethod[35]whenthenumberofthesurfacesdescribingtheenvironmentandofthefieldobservationpointsislarge.Inaddition,thepro-posedenhancedbeam-tracingtechniqueismoreefficientwithrespecttotheconventionalbroadcastmethod[1],because,asdiscussedinSectionII,notemployingareceptionsphere,itcanusealargerbeamcross-sectiontoobtainthesamefieldspatialresolution.

BERNARDIetal.:ACCURATEUTDMODELFORANALYSISOFINDOORRADIOENVIRONMENTS1519

ACKNOWLEDGMENT

TheauthorsgratefullyacknowledgeM.Fascettiforhishelpinthegraphicalpresentationoftheresults.

REFERENCES

[1]W.Honcharenko,H.L.Bertoni,J.L.Dailing,J.Quian,andH.D.Yee,

“MechanismsgoverningUHFpropagationonsinglefloorsinmodernofficebuildings,”IEEETrans.Veh.Technol.,vol.41,pp.496–504,Nov.1992.

[2]H.Hashemi,“Theindoorradiopropagationchannel,”Proc.IEEE,vol.

81,no.7,pp.943–968,July1993.

[3]R.J.C.Bultitude,P.Melançon,H.Zaghloul,G.Morrison,andM.

Prokki,“Thedependenceofindoorradiochannelmultipathcharacter-isticsontransmit-receiveranges,”IEEEJ.Select.AreasCommun.,vol.11,pp.979–990,Sept.1993.

[4]K.PahlavanandA.H.Levesque,“Wirelessdatacommunications,”

Proc.IEEE,vol.82,pp.1398–1430,Sept.1994.

[5]S.Y.SeidelandT.S.Rappaport,“Site-specificpropagationprediction

forwirelessin-buildingpersonalcommunicationsystemdesign,”IEEETrans.Veh.Technol.,vol.43,pp.879–1,Nov.1994.

[6]M.F.IskanderandZ.Yun,“Propagationpredictionmodelsforwireless

communicationsystems,”IEEETrans.MicrowaveTheoryTech.,vol.50,pp.662–673,Mar.2002.

[7]P.Bernardi,R.Cicchetti,andO.Testa,“EMC-orientedfieldprediction

forindoormicrowaveLANsystems,”presentedattheSymp.XXVIIthURSIGeneralAssembly,Maastricht,TheNetherlands,Aug.17–24,2002.

[8]P.Bernardi,M.Cavagnaro,R.Cicchetti,S.Pisa,E.Piuzzi,andO.Testa,

“AUTD/FDTDmodeltoevaluatehumanexposuretobase-stationantennasinrealisticurbanenvironments,”inProc.IEEEMTT-SInt.MicrowaveSymp.,Philadelphia,Pennsylvania,June8–13,2003,pp.403–406.

[9]C.L.Holloway,M.G.Cotton,andP.McKenna,“Amodelforpredicting

thepowerdelayprofilecharacteristicsinsidearoom,”IEEETrans.Veh.Technol.,vol.48,pp.1110–1120,July1999.

[10]T.Schöberl,“CombinedMonteCarlosimulationandraytracingmethod

ofindoorradiopropagationchannel,”inIEEEMTT-SInt.MicrowaveSymp.Dig.,NewYork,May16–20,1995,pp.1379–1382.

[11]M.KimpeandH.Leib,“Computerizedindoorradiochannelestimation

usingraytracing,”Ann.Telecommun.,vol.52,pp.251–263,May–June1997.

[12]C.Yang,B.Wu,andC.Ko,“Aray-tracingmethodformodelingindoor

wavepropagationandpenetration,”IEEETrans.AntennasPropagat.,vol.46,pp.907–919,June1998.

[13]S.ChenandS.Jeng,“AnSBR/imageapproachforradiowaveprop-agationinindoorenvironmentswithmetallicfurniture,”IEEETrans.AntennasPropagat.,vol.45,pp.98–106,Jan.1997.

[14]C.ChiuandC.Wang,“Impactofshapesofbuildingsandmetallicfurni-tureonindoormultipathenvironmentandbit-errorrateperformanceofmillimeter-wavechannels,”MicrowaveOpt.Technol.Lett.,vol.19,no.2,pp.137–142,Oct.5,1998.

[15]V.Degli-Esposti,G.Lombardi,C.Passerini,andG.Riva,“Wide-band

measurementandray-tracingsimulationofthe1900-MHzindoorpropa-gationchannel:Comparisoncriteriaandresults,”IEEETrans.AntennasPropagat.,vol.49,pp.1101–1110,July2001.

[16]J.H.Tarng,W.R.Chang,andB.J.Hsu,“Three-dimensionalmodeling

of900-MHzand2.44-GHzradiopropagationincorridors,”IEEETrans.Veh.Technol.,vol.46,pp.519–527,May1997.

[17]R.P.Torres,L.Valle,M.Domingo,S.Loredo,andM.C.Diez,“Cin-door:Anengineeringtoolforplanninganddesignofwirelesssystemsinenclosedspaces,”IEEEAntennasPropagat.Mag.,vol.41,pp.11–22,Aug.1999.

[18]F.S.deAdana,O.G.Blanco,I.G.Diego,J.P.Arriaga,andM.F.Cát-edra,“Propagationmodelbasedonraytracingforthedesignofper-sonalcommunicationsysteminindoorenvironments,”IEEETrans.Veh.Technol.,vol.49,pp.2105–2112,Nov.2000.

[19]R.G.KouyoumjianandP.H.Pathak,“Auniformgeometricaltheory

ofdiffractionforaedgeinaperfectlyconductingsurface,”Proc.IEEE,vol.62,no.11,pp.1448–1461,Nov.1974.

[20]W.D.BurnsideandK.W.Burgener,“Highfrequencyscatteringbythin

losslessdielectricslab,”IEEETrans.AntennasPropagat.,vol.31,pp.104–110,Jan.1983.

[21]K.A.ChamberlinandR.J.Luebbers,“AnevaluationofLongley-Rice

andGTDpropagationmodels,”IEEETrans.AntennasPropagat.,vol.30,pp.1083–1098,Nov.1982.

[22]P.Bernardi,R.Cicchetti,andO.Testa,“Athree-dimensionalUTD

heuristicdiffractioncoefficientforcomplexpenetrablewedges,”IEEETrans.AntennasPropagat.,vol.50,pp.217–224,Feb.2002.

[23]Z.Zhang,R.K.Sorensen,Z.Yun,M.F.Iskander,andJ.F.Harvey,“A

ray-tracingapproachforindoor/outdoorpropagationthroughwindowstructures,”IEEETrans.AntennasPropagat.,vol.50,pp.742–748,May2002.

[24]P.Bernardi,R.Cicchetti,andO.Testa,“AUTD-modelforfieldcom-putationinindoorradiocommunications,”inProc.Symp.XXVIthURSIGeneralAssembly,Ontario,Canada,Aug.13–21,1999,p.131.[25],“Anelectromagneticcharacterizationofindoorradioenvironment

inmicrowaveWLANsystems,”inIEEEMTT-SInt.MicrowaveSymp.Dig.,Phoenix,AZ,May20–25,2001,pp.1101–1104.

[26]W.C.Chew,WavesandFieldsinInhomogeneousMedia.NewYork:

IEEEPress,1995.

[27]AntennaHandbook,Y.T.LoandS.W.Lee,Eds.,Van-NostrandRein-hold,NewYork,1988.

[28]G.A.Deschamps,“Raytechniquesinelectromagnetics,”Proc.IEEE,

vol.60,pp.1022–1035,Sept.1972.

[29]G.Durgin,N.Patwary,andT.S.Rappaport,“Improved3Dray

launchingmethodforwirelesspropagationprediction,”Electron.Lett.,vol.33,no.16,pp.1412–1413,July1997.

[30]W.LuandK.T.Chan,“Advanced3Draytracingmethodforindoor

propagationprediction,”Electron.Lett.,vol.34,no.12,pp.1259–1260,June11th,1998.

[31]R.P.Torres,S.Loredo,L.Valle,andM.Domingo,“Anaccurateandeffi-cientmethodbasedonray-tracingforthepredictionoflocalflat-fadingstatisticsinpicocellradiochannels,”IEEEJ.Select.AreasCommun.,vol.19,pp.170–178,Feb.2001.

[32]L.J.Greenstein,D.G.Michelson,andV.Erceg,“Moment-methodesti-mationoftheRiceanK-factor,”IEEEComm.Lett.,vol.3,pp.175–176,June1999.

[33]S.Kim,H.L.Bertoni,andM.Stern,“Pulsepropagationcharacteristics

at2.4GHzinsidebuildings,”IEEETrans.AntennasPropagat.,vol.45,pp.579–592,Aug.1996.

[34]G.D.Durgin,T.S.Rappaport,andD.A.deWolf,“Newanalytical

modelsandprobabilitydensityfunctionsforfadinginwirelesscommu-nications,”IEEETrans.Commun.,vol.50,pp.1005–1015,June2002.[35]T.Huschka,“Raytracingmodelsforindoorenvironmentsandtheircom-putationalcomplexity,”inProc.IEEEPersonal,Indoor,andMobileRadioCommunicationSymp.PIMRC’94,TheHague,TheNetherlands,Sept.18–22,1994,pp.486–490.

PaoloBernardi(M’66–SM’73–F’93–LF’01)wasborninCivitavecchia,Italy,in1936.HereceivedtheelectricalengineeringandLiberaDocenzadegreesfromtheUniversityofRome“LaSapienza,”Rome,Italy,in1960and1968,respectively.

Since1961,hehasbeenwiththeDepartmentofElectronics,UniversityofRome“LaSapienza,”wherehebecameaFullProfessorin1976andwasDirectoroftheDepartmentofElectronicsfrom1982to1988.HewasVice-ChairmanoftheEuropeanCommunityCOSTProject244onBiomedical

EffectsofElectromagneticRadiationfrom1993to1997,ProjectCoordinatoroftheEuropeanCommunityProjectCEPHOS,devotedtoEMdosimetryandcompliancewithstandardsofmobilecellularphones,from1998to2000,andfrom2001to2004,hehasbeentheScientificCoordinatoroftheItaliannationalprojectdevotedtotheprotectionofpeopleandenvironmentfromtheEMemissions.Hehasauthoredover190scientificpapersandnumerousinvitedpresentationsatinternationalworkshopsandconferences.Currently,heisanEditorialBoardmemberforMicrowaveandOpticalTechnologyLetters.HewastheGuestEditoroftheAltaFrequenzaSpecialIssueonNonionizingElectromagneticRadiation(March1980)andtheWirelessNetworksSpecialIssueonExposureHazardsandHealthProtectioninPersonalCommunicationServices(Dec.1997).HisresearchhasdealtwiththepropagationofEMwavesinferrites,microwavecomponents,biologicaleffectsofEMwaves,andEMcompatibility.

Dr.BernardiisaMemberoftheBioelectromagneticsSociety(BEMS),Eu-ropeanBioelectromagneticsAssociation(EBEA),and“SocioFedele”oftheItalianElectricalandElectronicSociety(AEI).HewasChairmanoftheIEEEMiddleandSouthItalySectionfrom1979to1980andtheInternationalSci-entificRadioUnion(URSI)CommissionKonElectromagneticsinBiologyandMedicinefrom1993to1996.HewasarecipientoftheIEEECentennialMedalin1984andwaselectedFellowoftheIEEEfor“contributionstomi-crowaveinteractionswithbiologicalsystems,”in1993.HewasanAssociateEditorfortheURSIRadioScienceBulletinandanEditorialBoardMemberforIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES.

1520IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.52,NO.6,JUNE2004

RenatoCicchetti(S’83–M’83–SM’01)wasborninRieti,Italy,inMay1957.HereceivedtheLaureade-greeinelectronicsengineering(summacumlaude)fromtheUniversityofRome“LaSapienza,”Rome,Italy,in1983.

From1983to1986,hewasanAntennaDesigneratSeleniaSpazioS.p.A.(nowAleniaAerospazioS.p.A.),Rome,Italy,wherehewasinvolvedinstudiesontheoreticalandpracticalaspectsofan-tennasforspaceapplicationandscatteringproblems.From1986to1994,hewasaResearcher,andfrom

1994to1998,hewasanAssistantProfessorattheDepartmentofElectronicsEngineering,UniversityofRome“LaSapienza,”whereheiscurrentlyanAssociateProfessor.In1998,hewasVisitingProfessorattheMotorolaFloridaCorporateElectromagneticsResearchLaboratory,FortLauderdale,FL,whereOrlandinoTestawasborninAugust1972,inMinturno,Italy.Hereceivedtheelectronicengi-neeringdegree(cumlaude)andthePh.D.degreefromtheUniversityofRome“LaSapienza”,Rome,Italy,in1997and2003,respectively.

Since2001,heisahighschoolTeacherattheI.T.I.S.“G.Armellini”InstituteofRome,whereheisinvolvedinteachingelectronicsandtelecommu-nications.HeisalsocurrentlycollaboratingwiththeDepartmentofElectronicEngineering,UniversityofRome“LaSapienza.”Atpresent,heisstudying

high-frequencymodelsfortheanalysisofcomplexindoorradioenvironmentswithparticularattentiontoEMC/EMIproblems.Hismainresearchinterestsarepropagationandradiationofelectromagneticfields,electromagneticcom-patibility,microwaveandmillimeter-waveintegratedcircuits,andantennas.

hewasinvolvedwithantennasforcellularandwirelesscommunications.Presently,heiscoordinatoroftheactivity“EMC/EMIcharacterizationofanairportenvironmentinpresenceofcomplexelectromagneticsources”oftheItaliannationalproject2001to2004MIUR/CNR-ENEA,devotedtotheprotectionofpeopleandenvironmentfromEMemissions.HealsoservesasaReviewerofseveralscientificjournals.Hiscurrentresearchinterestsincludeelectromagneticfieldtheory,asymptotictechniques,electromagneticcompatibility,wirelesscommunications,microwaveandmillimeter-waveintegratedcircuits,andantennas.HeislistedinMarquisWho’sWhointheWorldandWho’sWhoinScienceandEngineering.

Dr.CicchettiisaMemberoftheItalianElectricalandElectronicSociety(AEI).

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务