gr-qc/9605044
Hawkingradiationdilatonandtheories
massesingeneralized
H.Liebl
1
Institutf¨urTheoretischePhysikTechnischeUniversit¨atWien
WiednerHauptstr.8-10,A-1040Wien
Austria
D.V.Vassilevich
2
andS.Alexandrov
DepartmentofTheoreticalPhysics
St.PetersburgUniversity1904St.Petersburg
Russia
Abstract
Ageneralizeddilatonactionisconsideredofwhichthestandarddilatonblackholeandsphericallyreducedgravityareparticularcases.TheArnowitt-Deser-Misner(ADM)andtheBondi-Sachs(BS)massarecalculated.Specialattentionispaidtoboththeasymptoticcon-ditionsforthemetricaswellasforthereferencespace-time.Forthelatteronewesuggestamodifiedexpressiontherebyobtaininganewdefinitionofenergy.DependingontheparametersofthemodeltheHawkingradiationbehaveslikeapositiveornegativepowerofthemass.
1
1Introduction
Overthelastfewyears1+1dimensionaldilatontheorieshavebeenstudiedextensivelyintheirstringinspired(CGHS)version[1]aswellasinmoregen-eralforms[2].Oneofthemainmotivationstostudysuchmodelsarisesfromthehopethatwithinthesimplifiedsettingof2Dmodelsonecangaininsightintophysicalpropertiesof4Dgravity.TheyactuallyallowforexampleblackholesolutionsandHawkingradiationandaremoreamenabletoquantumtreatmentsthantheir4Dcounterparts.Thetwomostfrequentlyconsideredtheories,thestringinspiredCGHSaswellassphericallyreducedgravity(SRG)differdrasticallyinsomeoftheirphysicalproperties.Forexampledifferenceswereobservedwithrespecttothecompletenessofnullgeodesicsforthosetwomodels[3].Thesedifferencesdirectlyleadonetoinvestigatephysicalpropertiesofageneralizedmodelofwhichthetwoprominentexam-plesaresimplyparticularcases.
Importantclassicalquantitiesaretheenergyatspatialandnullinfinity,thesocalledArnowitt-Deser-Misner(ADM)andtheBondi-Sachs(BS)mass,respectively(providedtheglobalstructureofthespace-timeisthesameasforSRG).Forgeneralmodels,however,thereexistingeneralnoflatspacetimesolutions[3]andthereforeaproperreferencespace-timehastobechosen.Asecondimportantpointistorealizethatthese“masses”dependontheasymptoticbehaviorofthemetricandarethereforeonlydefinedwithrespecttoaparticularobserver.Ourapproachisbasedonthesecondorderformalism.Significantinsightcanalsobegainedfromafirstorderformalism[4],[5].
AnimportantfeatureinsemiclassicalconsiderationsisthebehaviorofHawkingradiation.IntheCGHSmodelitisjustproportionaltothecos-mologicalconstantwhereasthedependenceinSRGisinversetoitsmass,whichimpliesanacceleratedevaporationtowardstheendofitslifetime.AswewillshowageneralizedtheorywillexhibitHawkingradiationwhichisproportionaltotheblackholemassintermsofpositiveornegativepowersoftheblackholemass,dependingontheparametersofthemodel.
Insection2werepeatsomerelevantresultsof[3]forthemetricandtheglobalstructureoftheclassicalsolutionofageneralizeddilatonLagrangianwhich,foracertainrangeofparametersposessesasingularitystructurecoincidingwiththeoneoftheSchwarzschildblackhole.TheADMandBSmassarecalculatedinsection3.Furthermorewewillpresentadefinitionforenergy,differingfromtheoneproposedbyHawking[6],bytakinga
2
modifiedreferencespace-time.Thepathintegralmeasureandtheproblemofinterpretationofvariousenergydefinitionswillbediscussedinsection4beforewefinallydemonstratethedynamicalformationofblackholesintheframeworkofconformalgauge,withspecialemphasisonthenecessaryboundaryconditions.
2ClassicalSolution
AmongthenumerousdifferentgeneralizationsoftheCGHSmodel[1]weconsidertheaction
L=
d2x
√
2
,b=−1
8
8
C
˜+
C−
2B
4Bφ
,C˜=C−2Bln2.(5)
Thetransformation
a=1:u=
e−2(1−a)φ
with
b=−1:a=1:l(u)=Ba
1|ua−1
,
a=1:l(u)=1
|
b+1
e−2(b+1)u
,b=−1:a=1:l(u)=
1
a−1
C+
2B
8
C
˜+4Bu
,wheretheconstantsaregivenby
BC
1=
a−1
BB
2=
a−1
.Thescalarcurvatureofthemetric(2)hastheform
b=−1R=1
b+1
(b+1−a)e−2(1+b)φ
b=−1
R=
1
a−1
+B′a+b−12uBb
2
2
e2u−
a−1
aC
a−1
b=−1,a=1:R=
1
l(u)
du2,
isobtainedbymeansofthetransformation
dv=dt−
du
3
(9)(10)
(12)
(13)
(17)
(19)
4
SincebelowwewillrepeatedlymakeuseofthespecialcasesofasymptoticallyMinkowski,RindleranddeSitterspace-timeswelistthemforcompleteness.Afterasuitablerescaling(seeeq.(34)below)theyare
AsymptoticallyMinkowskispace:(b=a−1)
(ds)2=(MU
a
a−1AsymptoticallyRindlerspace:(b=−0)
1)−1dU2(ds)2=(MUa22a
2U)dt2
−12Sitterspace:−(MU2U)dUAsymptoticallyde(b=1−a)
(ds)2
=(MU
a
a−1
−B2U2)−1dU2
2−a
withM=B1B
(21)(22)(23)
5
gravity[7][15]andwilllateronapplythemtosolutionsofourmodel.Wereviewwhatkindofslicingwehavetoworkwithandwillthenoutlinethemainstepsonhowtoobtaintheexpressionforthetotalenergy.
Consideraone-dimensionalspacelikesliceΣdrawninourspacetime(seeFig.1).AssumethatΣhasaboundarypointB=∂Σ.Lettheunit,outward-pointing,spacelikenormalofthepointBasembeddedinΣbenµ.IfΣisasurfaceofconstanttwithmetricΛ2dr2thenthespace-timemetricnearΣcanbewritteninADMform[16]
ds2=Λ2dr2−N2(dt+Λtdr)2.
(24)
B(t)NuΣ
NrBnµFigure1:Spacetimefoliation:ΛtdenotingtheradialshiftandΛtheradiallapse
Toobtaintheexpressionforthetotalenergyonehastocasttheactionintohamiltonianform.Boundarytermshavetobeaddedtotheactiontoensurethatitsassociatedvariationalprinciplefixestheinducedmetricandthedilatonontheboundary.Asshownin[7],theformofasuitableHamiltonianwithboundarytermsatBisthefollowing:
H=
Σ
dr(NH+NrHr)+N(Eql+NrΛPΛ)|B,
(25)
wherePΛistheADMmomentumconjugatetoΛandHandHraretheHamiltonianandthemomentumconstraintrespectively.SincetheexpressionfortheHamiltonian(25)divergesingeneral,areferenceHamiltonianH0hastobesubtractedtoobtainthephysicalHamiltonian.E,whichdefinesthequasilocalenergyisgivenby
Eql=e−2φ(n[φ]−n[φ]0)
(26)
6
wherethesecondtermindicatesthatthevalueisreferencedtoabackground.WeshallonlyconsiderthecasewhenNr=0atB,i.etheon-shellvalueofHamiltonianwillbeassociatedonlywithtimetranslations(Hdoesnotgeneratedisplacementsnormaltotheboundary).Definingthetotalenergyasthevalueofthephysicalhamiltonianontheboundarywefinallyget
E≡H|B=NEql=4Ne−2φ(n[φ]−n[φ]0)|B
(27)
OnlyforN=1thiscoincideswiththeADMmass,whereastheadditionalfactorNin(27)givestheproperdefinitionforthetotalenergyforspace-timeswhoselapsedoesn’tgotooneasymptotically[17,6].However,asweshallseeattheendofthissection,theformof(27)isnotunique.Toapplythisresulttoouraction(1)wetakethelineelement
(ds)2=g(φ)l(φ)dt2−
g(φ)
Λ
∂
l(φ)
weobtain
EADM=4e
−2φ
N2=−g(φ)l(φ)
(30)
l(φ)−
7
wehavenoa-dependenceonEfortheaction(1).CalculatingthisquantityatspacelikeinfinitycorrespondstotheADMmass.Inserting(4)into(31)withC=0forl0thedivergingtermscanceleachotherwhereasthenextordertermsgiveafinitecontribution.Weobtain
E=
C
+O(e−(b+1)φ)
for
(b+1)φ→+∞.
(33)
2
ThiscoincideswiththeexpectationthattheparameterCisproportionaltothemass.Noticethatfortheseexpressionsthereferencespace-time(C=0)itselfcontainsalreadyacurvaturesingularity[3]exceptforthespecialcasesconsideredbelow.Forsphericallyreducedgravity(a=−b=1
2
dv
dU=K−
1
K
(35)
andatthesametimeweareabletoobtaindimensionsoflengthforUandV.SimultaneouslyEADMischanged.WeseethatanunambiguousdefinitionofEADMincludestwoimportantingredients.Thefirstoneisthereferencepointforenergywhichisspecifiedbythechoiceofgroundstatesolution.WedefinethegroundstateconfigurationsbyC=0.FortheimportantparticularcasesofasymptoticallyMinkowski,RindleranddeSittermodelsthischoicegiveszeroorconstantcurvaturegroundstatesolutions.Thesecondingredientistheasymptoticconditionforthemetric.ItcorrespondstothechoiceofanobserverwhomeasuresenergyandHawkingradiationattheasymptoticregion.Thisambiguityinthechoiceoftimefortheasymptoticobserverisexpressedin(35).Inthespiritoftheseremarks,thevalue(32)and(33)oftheADMmassshouldbespecifiedas”theADMmasswithrespectto
8
C=0solutionmeasuredbyanasymptoticobserverwithtimeandlengthscalesdefinedbymetric(2)”.Thisvalueisunambiguouslydefinedforallvaluesofaandb.Fortheimportantparticularcasesmentionedaboveotherdefinitionsaremorerelevant:
•AsymptoticallyMinkowskiandRindlerspaces:
Asmentionedabove,eq.(34)canbeusedtoobtaindimensionsoflengthforUandV.ThishappenstobethecaseifKhasdimensionsofenergysquared.
m1−m
ThereforeacombinationofB1andB2,e.g.B1B2,orequivalentlyofCandB,isanaturalchoicesinceallofthesequantitieshavedimensionofenergysquared.However,becauseourvacuumisdefinedasC=0,i.e.B1=0,onlyB2shouldcontributetoK.Ifwerequireinadditionthatfortheminkowskiancaseourmetricapproachesasymptoticallytheunitoneηµν=diag(-1,1),wehavetouse
K=B2
whichinturngives
2−a
a−1−b
a−1
(36)
L(U)=B1B
With
n=
1∂U
=
−B
∂
a−1
.(37)
√Λg(φ)
2
b+1
2
(2(a−1))
b−a+1
2
a
2
andEADM=
C
2
,(41)
respectively.
•AsymptoticallydeSitterspaces:
9
Arescalingof(8)asin(34)doesnotchangetheasymptoticbehaviorof(19),whichisgivenby
(ds)2=−B2u2dt2+(B2u2)−1du2,
(42)
butthecoefficientoftheasymptoticallyvanishingtermischangedascanbeseenfrom(37).Thereforeweget
EADM=
C
B
1
2
,(45)
whichnowdoesnotonlyholdfor|φ|→∞butonthewholespace-time.Thisvaluedependsagaininthesamemannerasaboveontheasymptoticconditionforthemetric.NotethatforasymptoticallyMinkowski,RindlerordeSittersolutionsthetwoexpressions(33)and(45)forEagree.Ontheotherhand,forarbitraryasymptoticbehaviorthetwovaluesofEcorrespondtotwodifferentdefinitionsoftheasymptoticobserverinreferencespace-time.Inarecentpaper[18]Mannalsoconsideredamodifiedreferencespace-timefortheenergytoobtainthesocalledquasilocalmass,whichalsodivergesfromHawking’sproposal.Notethatthesamerescalingasin(34)couldcertainlybeappliedto(44)therebygivingadditionalcoefficientsofBandtheparameters.Asimilarresultwasalsoobtainedin[19]byapplyingaRegge-Teitelboimargument.
10
3.2Bondi-SachsMass
InthefirstpartofthischapterweobtainedthevalueofthetotalenergywhichcorrespondstotheADMmassatspatialinfinity.HerewewillshowthatEonI+,thesocalledBSmassEBS,equalsEADManddoesnotdependonthevalueoftheretardedtimecoordinatev.However,theproceduretoobtainthisquantityislogicallydifferent.ThemaindifferencewithrespecttothecalculationoftheADMmassaboveisthatwedonottakethelimitφ→∞alongasingleslicebutinsteadwewillconsiderthelimitofexpression(27)alongaparticularnullhypersurfaceNassociatedwithdifferentslicesalongalineofconstantretardedtime[20](seeFig.2).ForconveniencewewillworkagainwiththeEF-metric(8).Firstwedefineafuturedirectedlightlike
lim
φ−>
8N
a) ADMb) Bondi
Figure2:ConceptualdifferencesintheconstructionoftheADMandtheBondimass
vectorkµandpickanotherlightlikevectorhµsuchthathµkµ=1.Theyare
kµ∂/∂xµ=
hµ∂/∂xµ=−
2
∂/∂u2∂/∂u+
(46)
l∂/∂v.
(47)
11
Next,alongthenullhypersurfaceNwelet
u˜µ∂/∂xµ:=
1
(kµ+hµ2)(48)=
1
l
∂/∂v(49)
definethetimelikenormaltotheΣslicesspanningthepointsofN.Similarlywedefineitsspacelikenormal
n˜µ∂/∂xµ:=
1
(kµ−hµ)(50)
=
√
2√∂/∂v=N−1∂/∂t,whichisobtainedbyusing(20).Therefore,
withN=
2
l(u)l0(u)
∂φ
∂u
.(53)
Using(52)in(27)andrememberingthatg(φ)dφ=duandl(u)=l(φ)g(φ)
wefinallyobtain
EBS=4e
−2φ
l(φ)−
12
whichisexactlythesameasexpression(31)andthereforetheADMmassandtheBondi-Sachsmassturnouttohavethesamevalue.ThiscanbereadilyunderstoodbyrecallingthatthedifferencebetweentheBSandtheADMmassistheintegralofastressenergyfluxwhichvanishesatthispurelyclassicallevel.Similarly(53)exactlyreproducestheresultof(44)therebyshowingthatalsothemodifieddefinitionofmassonI+agreeswiththevalueatspatialinfinity.
4
HawkingradiationofgeneralizedSchwarzschildblackholes
ThereareanumberofwaysofcalculatingtheHawkingradiation[21].Oneofthemconsistsincomparingvacuabeforeandaftertheformationofablackhole.Inthecaseofgeneralizeddilatongravitythiswayistechnicallyratherinvolved.Wepreferasimplerapproachbasedonananalysisofstaticblackholesolutions.
ConsiderageneralizedSchwarzschildblackholegivenby
ds2=−L(U)dτ2+L(U)−1dU2,
whereL(U)hasafixedbehaviorattheasymptoticregionI+:
L(U)→L0(U)
(56)(55)
withL0(U)correspondingtothegroundstatesolution.AtthehorizonwehaveL(Uh)=0.WecancalculatethegeometricHawkingtemperatureasthenormalderivativeofthenormoftheKillingvector∂/∂τatthe(nonde-generate)horizon[22]
TH=|
1
2
lnL.(59)
13
Inconformalcoordinatesthestressenergytensorlookslike[21]
T−−=−
1
2
∂z,∂zρ=
1
2
L′′L,
()
whereprimedenotesdifferentiationofLwithrespecttoU.Bysubstituting()into(63)weobtaintheHawkingflux
T−−|asymp=
12
L′(U))2|hor.
(65)
Itiseasytodemonstratethatourresultisindependentofaparticularchoiceofconformalcoordinatesprovidedthebehaviorattheasymptoticregionisfixed.Withoutdestroyingtheconformalgaugeonecanchangecoordinatessothat
ρ→ρ+h+(x+)+h−(x−)
(66)
14
withtwoarbitraryfunctionsh±.SincethebehaviorofρatI+isfixed,h−=0.Thetransformationwitharbitraryh+doesnotchangeTtoapply(65)tosomespecificspace-timesweremark−−.
BeforewestartthatasinthecaseoftheADMandBondimassthevaluewillonceagaindependonourchoiceoftheasymptoticbehaviorofthemetric.WewillusethesameformofthemetricasforthecalculationoftheADMmass,equations(35)and(37),whichgivethemetric(55)afteratransformationlike(20).Forthemostinterestingspace-timesofouraction(1)wewillexplicitlypresentthesolutions.
•AsmentionedAsymptoticaboveMinkowskithiscorrespondsspacetimes:
tob=a−1.From(37)wegetfora=1
2−a
L(U)=B1B
a−1
−1.(67)
ThehorizondeterminedbyL(Uh)=0islocatedat
U1−a
h=B
2
2a
(68)
andthereforeweget
Ta2
−−|asymp=
a
2B
a
.(69)
Forthespecialcasea=1,theCGHSmodel,wehave
L(U)=
e
√
2B
−1(70)
whichresultsin
Tλ2
−−|asymp=
2(a−1)
2
U
a
15
andgetforthevalueofHawkingradiation
T−−|asymp=
2−a
2
2
1
2
2(a−1)
U
a
2
2
U(74)
andtheHawkingradiationreads
T−−|asymp=
B(a−1)
.
(75)
Notice,thatifwehadnotusedtherescalingcoefficientasin(37),butifinsteadwehadset
K=
B
48
whichisjusttheresultgivenin[11].
,(77)
5
Pathintegralmeasure,asymptoticcondi-tionsandtheproblemofinterpretation
Itiswellknown(seee.g.[26])thatthereisauniqueultralocalpathintegralmeasureforascalarfieldfyieldingacovariantlyconservedstressenergytensor.Thismeasureisdefinedbytheequation
Dfexpi
√
16
Asaconsequence,HawkingradiationandADMmassdependonachoiceofasymptoticconditionsandpathintegralmeasure.
IndilatongravitywehaveanewentitywhichisabsentinEinsteingrav-ity,thedilatonfield.Oneistemptedtousearescaledmetricatsomestepsofthecalculations.Inthepresentpapersucharescalingistrivialeverywhere.Thismeansthatweareusingjustthemetricgµνwhichappearsintheaction(1)todefinethepathintegralmeasure,stressenergytensoretc.Ofcourse,thisisjustamatterofinterpretation.Onecanclaimthattherescaledmet-ricΦ(φ)gµνdescribesthegeometryofspace-timeandthusshouldbeusedinthedefinitionsoftheabovementionedquantities.However,therescaledmetricshouldbeusedeverywhere.Otherwise,thequantumtheorybecomesinconsistent.Forexample,apartofdiffeomorphisminvariancecanbelost.WebelievethatifonewishestokeepcontacttofourdimensionalEinsteingravity,whichisdiffeomorphisminvariant,oneshouldretaingeneralcoordi-nateinvariance3.Inthecontextofdilatongravitymodelsatransitionfrom
gµνtogΦ
µν=Φ(φ)gµνmeansreplacementofoneparticulardilatoninterac-tionbyanother.SuchareplacementshouldingeneralchangetheHawkingradiationbecausethedefinitionsofthestressenergytensorandpathin-tegralmeasureandtheasymptoticbehaviorofmetricarenotconformallyinvariant.Atleast,conformalinvarianceoftheHawkingradiationwasneverproved.SuchconformalequivalencewasconjecturedinarecentpaperbyCadoni[29]whousedconformaltransformationingeneraldilatontheorytoremovekineticterm(∇φ)2ofthedilatonfield.Healsousedaφ-dependentpathintegralmeasureandφ-dependentstressenergytensortodefinetheHawkingradiation.AcomparisonshowsthathisresultsfortheHawkingtemperaturedifferbyanaandbdependentfactorfromours,whichwereob-taineddirectlywithoutuseofconformaltransformation.WeconcludethatconformallyequivalenttheoriesdoreallygivedifferentresultsfortheHawk-ingradiation.Thisstatementcanbeillustratedbyanexamplefrom.[30],wheretheCGHSblackholewastransformedtotheflatRindlerspace-time.DuetotheabsenceofblackholecurvaturesingularityanyradiationinthelatterspaceshouldbeconsideredastheUnruhradiationratherthantheHawkingone.
WehaveseenthatbothADMmassandHawkingradiationdependontheasymptoticbehaviorofthemetricandonthesubtractionprocedureofrefer-
17
encespace-timecontribution.Thisdependenceisquitenaturalfromaphys-icalpointofview.Sinceenergyandenergyfluxarenotcoordinateinvariant,inadditiontoazeroenergystateoneshouldalsodefinetwoobservers.Oneofthemcorrespondstoaparticularsolution,andtheothertothereferencezeropointconfiguration.ForasymptoticallyMinkowski,RindlerordeSittersolu-tionthereisachoicewhichisclearlypreferable.WiththischoiceourresultsforADMmassandHawkingradiationareindependentofcoordinatetrans-formationswhichvanishrapidlyenoughatasymptoticregion.InthecaseoffourdimensionalEinsteingravityappropriateasymptoticconditionswereformulatedbyFaddeev[27].FortheCGHSmodelwithPolyakov–Liouvilletermthesuitableasymptoticconditionswerefoundrecently[14].
6
6.1
Dynamicalformationofblackholes
Generalsolution
Considerascalarmatterfieldfminimallycoupledtogravity.Weaddthefollowingtermtotheaction(1)
Lm=−
1
−ggµν∇µf∇νf.B
e2φTµν=0
(79)
Inthepresenceofthismatterfieldtheequationsofmotiontaketheform
gµν((4−2a)(∇φ)2−2∇2φ−
2
R−4a(∇φ)2+4a∇2φ+B(a+b)e2(1−a−b)φ=0
∇2f=0(80)
andinconformalgaugetheseequationsare
2∂+∂−ρ+4a∂+φ∂−φ−4a∂+∂−φ+
B
e2(ρ+(1−a−b)φ)=0
1
∂+∂−f=0
(82)(83)
4
4(a−1)∂±φ∂±φ+2∂±∂±φ−4∂±ρ∂±φ=
18
Thematterequationofmotion(83)canbesolvedbysettingf=f(x+).Thenρcanbedeterminedfromthe(−,−)componentof(84):
∂−ρ=(a−1)∂−φ+
1
2
ln|∂−φ|+ξ(x+)
(86)
Thearbitraryfunctionξ(x+)canberemovedbyusingresidualgaugefreedomoftheconformalgauge.Inwhatfollowswesetξ=0.ρcanberemovedfromtheequationsofmotionwhicharereducedtothefollowingthreeindependentequations:
1
∂+∂−(φ−
1
B
8
8(f′)2
(87)(88)
|∂−φ|e−2bφ
−2∂+∂−φ+4∂+φ∂−φ+
8(b+1)
e−2φ(b+1)=−2η(x+)e−2φ+λ(x+)
(90)
withtwoarbitraryfunctionsηandλ.Fromeq.()oneobtains
∂+e−2φ∓
B
16(b+1)
e
−2bφ
−
1
2
(f′)2
(93)
19
Thetwoequations(92)and(93)completelydefineφforagivenmatterdistribution.Letustakethematterfieldintheformofshockwave
1
Bbt
2bln|
b+1>0
φ=
1
4(b+1)
|,for
B
±
B
Bbx−
2b
ln|
±
B
20
intheasymptoticregionsbeforeandaftertheformationofablackholethemetricofthesolutions(96)and(95)behavesas
e2ρ→|B/16a|.
(99)
ThustoobtainablackholesurroundedbyMinkowskispacewithunitmetricweneedaproperrescalingofcoordinates.
Letusmodifytheprocedureoftheprevioussubsectioninordertoobtaintherescaledsolution.Firstofall,oneshouldtakethefunctionξin(86)intheform
ξ=
1
B
.a
(100)
Withthischoiceequation(86)nowreads
ρ=(a−1)φ+
1
4
a
2
.(102)
ThisconstantisproportionaltotheenergyoftheshockwavemeasuredbyaMinkowskispaceobserver.Thisconfirmsourpreviousresult(41)fortheADMmassofblackholeinasymptoticallyminkowskianspace-time.
ItistemptingtocalculatetheHawkingradiationbycomparingnormalorderingprescriptionsandGreenfunctionsintwoasymptoticregions,beforeandafterformationofablackhole[31].Ifsuchamethodcouldbeappliedinthecoordinatesystems(x+,x−)and(x+,h(x−)),thestressenergytensoroftheHawkingradiationwouldbecalculatedbydifferentiatingthefunctionh(x−).Thisappeared,however,nottobethecase.Thefullgroundstatesolutioniscoveredbypositive(ornegative)valuesofxort.HencetheGreenfunctiondiffersfromthestandardexpressionvalidforinfiniterangeofallcoordinates.
21
7Conclusions
InthepresentpaperwecalculatedtheADMandBSmassandHawkingradiationoftheblackholesolutionsingeneralizeddilatongravitiesdescribedbytheaction(1).Specialattentionwaspaidtoasymptoticconditionsforthemetricfield.Itturnedoutthatbothmassandstressenergytensordependontheseconditions.Fromaphysicalpointofviewthismeansthattheyareinfluencedbythechoiceofanasymptoticobserver.Forgenericaandbthischoiceisnotunique.Itratherdependsontheinterpretationofparticulartwodimensionalmodelanditsrelationtofourdimensionalgravity.FortheselectedvaluesofaandbcorrespondingtoasymptoticallyMinkowski,RindlerordeSittersolutionsthereexistsapreferredcoordinateframeatinfinity.Thisfactallowssomephysicalconclusions.Wecanseethat,dependingontheparametersofthedilatonicaction,theHawkingtemperaturecanberelatedtotheblackholemasswithpositiveornegativepower.Inafullyquantizedtheorytheparametersaandbshouldbecomerunningcouplingsbeingfunctionsofascaleparameterwhichcouldbetheblackholemass.Thusitcouldhappenthatablackholewhichstartsitsevolutionnearthepointa=−b=1
22
[1]C.G.Callan,S.B.Giddings,J.A.Harvey,andA.Strominger,Phys.
Rev.D,45(1992)1005;[2]G.Mandal,A.SenguptaandS.R.Wadia,Mod.Phys.Lett.A6(1991),
1685(preprintIASSNS-HEP-91/10);E.Witten,Phys.Rev.D44(1991)314;V.P.Frolov,Phys.Rev.D46(1992)5383;J.G.RussoandA.A.Tseytlin,Nucl.Phys.B382(1992)259;J.Russo,L.Susskind,andL.Thorlacius,Phys.Lett.B292(1992)13;T.Banks,A.Dabholkar,M.Douglas,andM.O’Laughlin,Phys.Rev.D45(1992)3607;S.P.deAlwis,Phys.Lett.B2(1992)278;E.Elizalde,P.Fosalba-Vela,S.NaftulinandS.D.Odintsov,Phys.Lett.B352,(1995),235[3]M.O.Katanaev,W.KummerandH.Liebl,“Onthecompletenessof
theBlackHoleSingularityin2dDilatonTheories”,Techn.Univ.Wienprep.TUW95-24(gr-qc/9602040)[4]T.Kl¨oschandT.Strobl,Class.QuantumGrav.13(1996)965,(gr-qc/9508020);T.Kl¨oschandT.Strobl,ClassicalandQuantumGravity
in1+1Dimensions:PartII:Theuniversalcoverings,(gr-qc/9511081)tobepublishedinClassicalandQuantumGravity;[5]W.KummerandS.R.Lau(inpreparation)
[6]S.W.HawkingandG.T.Horowitz,TheGravitationalHamiltonian,Ac-tion,EntropyandSurfaceTerms,(gr-qc/9501014)[7]S.R.Lau”Onthecanonicalreductionofsphericallysymmetricgrav-ity”,Techn.Univ.Wienprep.TUW95-21(gr-qc/9508028),toappearinClass.QuantumGrav.[8]C.Teitelboim,Phys.Lett.126B(1983)41;R.Jackiw,1984Quantum
TheoryofGravity,edS.Christensen(Bristol:Hilger)p.403[9]J.S.LemosandP.M.Sa,Phys.Rev.D49(1994)27[10]S.Mignemi,Phys.Rev.D50,R4733(1994)
[11]A.FabbriandJ.G.Russo,’Solublemodelsin2ddilatongravity’,prep.
CERNTH/95-267,(hep-th/9510109),tobepublishedinPhys.Rev.D
23
[12]A.S.Eddington,AComparisonofWhitehead’sandEinstein’sFormulas,
Nature/113,(1924),192;D.FinkelsteinPast-FutureAsymetryoftheGravitationalFieldofaPointParticle,Phys.Rev.110(1958),965-967[13]M.Iofa,EnergyinDilatonGravityinCanonicalApproach,(hep-th/9602023)[14]W.T.KimandJ.Lee,Int.J.Mod.Phys.A11no.3(1996)553[15]J.D.BrownandJ.W.York,Phys.Rev.D47,1407,(1993)
[16]R.Arnowitt,S.Deser,andC.W.Misner,inGravitation:AnIntroduc-tiontoCurrentResearch,ed.L.Witten,Wiley,NewYork,(1962)[17]L.AbbottandS.Deser,Nucl.Phys.B195(1982)76
[18]K.C.K.Chan,J.D.E.CreightonandR.B.Mann,Conservedmassesin
GHSEinsteinandstringblackholesandconsistentthermodynamics,(gr-qc/9604055)[19]W.KummerandP.Widerin,Phys.Rev.D51(1995)4265
[20]S.R.Lau,”Energyofisolatedsystemsatretardedtimesasthenulllimit
ofthequasilocalenergy”,personalnotes01/96[21]S.B.Giddings,e.g.N.D.BirrellandP.C.W.Davies,Quantumfieldsin
curvedspace,CambridgeUniversityPress,Cambridge1982;R.Brout,S.Massar,R.Parentani,Ph.Spindel,Phys.Rep.260(1995)329[22]Cf.e.g.R.M.Wald,“GeneralRelativity”,UniversityofChicagoPress,
1984[23]C.W.Misner,K.S.ThorneandJ.A.Wheeler,Gravitation(Freeman,San
Francisco,1973)[24]S.M.ChristensenandS.A.Fulling,Phys.Rev.D15(1977)2083.[25]R.M.Wald,Commun.Math.Phys.45(1975)9.
[26]K.Fujikawa,U.Lindstrom,N.K.RocekandP.vanNieuwenhuizen,
Phys.Rev.D37(1988)391.[27]L.D.Faddeev,UspekhiFiz.Nauk[Sov.Phys.Uspekhi]136(1982)435.
24
[28]R.Jackiw,Anotherviewonmasslessmatter-gravityfieldsintwodimen-sions,(hep-th/9501016);
D.Amelino-Camelia,D.BackandD.Seminara,Phys.Lett.B354(1995)213;
H.S.La,Areapreservingdiffeomorphismsand2Dgravity,MIT-CTP-2462,(hep-th/9510147)
J.CruzandJ.Navarro-Salas,Solvablemodelsforradiatingblackholesandarea-preservingdiffeomorphisms,ValenciapreprintFTUV/95-31(1995),(hep-th/9512187)[29]M.Cadoni,Phys.Rev.D53,(1996),4413
[30]M.CadoniandS.Mignemi,Phys.Lett.B358(1995)217.
[31]A.Strominger,“LesHouchesLecturesonBlackHoles”(hep-th/9501071);L.Thorlacius,“BlackHoleEvolution”(hep-th/9411020);S.B.Giddings,“QuantumMechanicsofBlackHoles”,(hep-th/9412138);
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务