您好,欢迎来到测品娱乐。
搜索
您的当前位置:首页2009年全国统一高考数学试卷(理科)(全国卷一)及解析

2009年全国统一高考数学试卷(理科)(全国卷一)及解析

来源:测品娱乐


2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)

一、选择题(共12小题,每小题5分,满分60分)

1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( ) A.3个 B.4个 C.5个 D.6个 2.(5分)已知

=2+i,则复数z=( )

A.﹣1+3i B.1﹣3i C.3+i D.3﹣i 3.(5分)不等式

<1的解集为( )

A.{x|0<x<1}∪{x|x>1} B.{x|0<x<1} C.{x|﹣1<x<0}

D.{x|x<0}

=1(a>0,b>0)的渐近线与抛物线

4.(5分)已知双曲线

y=x2+1相切,则该双曲线的离心率为( ) A.

B.2 C.

D.

5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种 B.180种 C.300种 D.345种 6.(5分)设、、是单位向量,且小值为( ) A.﹣2

B.

﹣2 C.﹣1

D.1﹣

,则

的最

7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在

底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )

A. B. C.

D.

,0)中心对

8.(5分)如果函数y=3cos(2x+φ)的图象关于点(称,那么|φ|的最小值为( ) A.

B.

C.

D.

9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为( ) A.1 B.2 C.﹣1

D.﹣2

10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为

,Q到α的距离为

,则P、Q两点之间距离的

最小值为( )

A.1 B.2 C.

D.4

11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则( )

A.f(x)是偶函数 B.f(x)是奇函数 C.f(x)=f(x+2) D.f

(x+3)是奇函数 12.(5分)已知椭圆C:

+y2=1的右焦点为F,右准线为l,点A∈

l,线段AF交C于点B,若=3,则||=( ) A.

二、填空题(共4小题,每小题5分,满分20分)

13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 .

14.(5分)设等差数列{an}的前n项和为Sn,若S9=81,则a2+a5+a8= . 15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于 . 16.(5分)若

三、解答题(共6小题,满分70分)

17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.

18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=

,DC=SD=2,点M在侧棱SC上,∠ABM=60°

,则函数y=tan2xtan3x的最大值为 .

B.2 C.

D.3

(I)证明:M是侧棱SC的中点; (Ⅱ)求二面角S﹣AM﹣B的大小.

19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互,已知前2局中,甲、乙各胜1局.

(I)求甲获得这次比赛胜利的概率;

(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.

20.(12分)在数列{an}中,a1=1,an+1=(1+)an+(1)设bn=

,求数列{bn}的通项公式;

(2)求数列{an}的前n项和Sn.

21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点. (Ⅰ)求r的取值范围;

(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].

(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域; (2)证明:

2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)

参与试题解析

一、选择题(共12小题,每小题5分,满分60分)

1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( ) A.3个 B.4个 C.5个 D.6个

【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.

【解答】解:A∪B={3,4,5,7,8,9}, A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A. 也可用摩根律:∁U(A∩B)=(∁UA)∪(∁UB) 故选A

2.(5分)(2009•全国卷Ⅰ)已知A.﹣1+3i B.1﹣3i C.3+i D.3﹣i

【分析】化简复数直接求解,利用共轭复数可求z. 【解答】解:故选B

3.(5分)(2009•全国卷Ⅰ)不等式

<1的解集为( )

,∴

=2+i,则复数z=( )

A.{x|0<x<1}∪{x|x>1} B.{x|0<x<1} C.{x|﹣1<x<0}

D.{x|x<0}

【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值. 【解答】解:∵∴|x+1|<|x﹣1|, ∴x2+2x+1<x2﹣2x+1. ∴x<0.

∴不等式的解集为{x|x<0}. 故选D

4.(5分)(2009•全国卷Ⅰ)已知双曲线

=1(a>0,b>0)的

<1,

渐近线与抛物线y=x2+1相切,则该双曲线的离心率为( ) A.

B.2 C.

D.

【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得. 【解答】解:由题双曲线

代入抛物线方程整理得ax2﹣bx+a=0, 因渐近线与抛物线相切,所以b2﹣4a2=0, 即

的一条渐近线方程为

故选择C.

5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种 B.180种 C.300种 D.345种

【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.

【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;

(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法. 故选D

6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且

A.﹣2

B.

的最小值为( ) ﹣2 C.﹣1

= cos

D.1﹣

﹣(

),,则

【分析】由题意可得 •+

=1﹣

,故要求的式子即

=1﹣

cos

再由余弦函数的值域求出它的最小值. 【解答】解:∵、、 是单位向量,∴

=

﹣(

)•+

,∴=0﹣(

=

)•+1=1﹣

cos

=1﹣

cos

故选项为D

7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )

A. B. C.

D.

【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之. 【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;

并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=|A1D|=,|A1B|=

=.

由余弦定理,得cosθ=故选D.

8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点

(A.

,0)中心对称,那么|φ|的最小值为( ) B.

C.

D.

中心对称,

【分析】先根据函数y=3cos(2x+φ)的图象关于点令x=

代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.

中心对称. .

【解答】解:∵函数y=3cos(2x+φ)的图象关于点∴故选A

由此易得

9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为( ) A.1 B.2 C.﹣1

D.﹣2

【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.

【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a), 又∵∴x0+a=1 ∴y0=0,x0=﹣1 ∴a=2. 故选项为B

10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为

,Q到α的距离为

,则P、

Q两点之间距离的最小值为( )

A.1 B.2 C.

D.4

【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可. 【解答】解:如图

分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D, 连CQ,BD则∠ACQ=∠PDB=60°,∴AC=PD=2 又∵

当且仅当AP=0,即点A与点P重合时取最小值. 故答案选C.

11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则( )

A.f(x)是偶函数 B.f(x)是奇函数 C.f(x)=f(x+2) D.f(x+3)是奇函数

【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.

【解答】解:∵f(x+1)与f(x﹣1)都是奇函数, ∴函数f(x)关于点(1,0)及点(﹣1,0)对称, ∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0, 故有f(2﹣x)=f(﹣2﹣x),

函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数. ∴f(﹣x﹣1+4)=﹣f(x﹣1+4), f(﹣x+3)=﹣f(x+3), f(x+3)是奇函数. 故选D

12.(5分)(2009•全国卷Ⅰ)已知椭圆C:

+y2=1的右焦点为F,

右准线为l,点A∈l,线段AF交C于点B,若=3,则||=( ) A.

B.2 C.

D.3

【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据|AF|.

,求出BM,AN,进而可得

【解答】解:过点B作BM⊥x轴于M, 并设右准线l与x轴的交点为N,易知FN=1. 由题意

故FM=,故B点的横坐标为,纵坐标为± 即BM=, 故AN=1, ∴故选A

二、填空题(共4小题,每小题5分,满分20分)

13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 ﹣240 .

【分析】首先要了解二项式定理:(a+b)n=Cn0anb0+Cn1an﹣1b1+Cn2an﹣

22

b++Cnran﹣rbr++Cnna0bn,各项的通项公式为:Tr+1=Cnran﹣rbr.然后根据

题目已知求解即可.

【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,

含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7. 由C103=C107=120知,x7y3与x3y7的系数之和为﹣240. 故答案为﹣240.

14.(5分)(2009•全国卷Ⅰ)设等差数列{an}的前n项和为Sn,若S9=81,则a2+a5+a8= 27 . 【分析】由s9解得a5即可. 【解答】解:∵∴a5=9

∴a2+a5+a8=3a5=27 故答案是27

15.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于 20π .

【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积. 【解答】解:在△ABC中AB=AC=2,∠BAC=120°, 可得

由正弦定理,可得△ABC外接圆半径r=2, 设此圆圆心为O',球心为O,在RT△OBO'中, 易得球半径

故此球的表面积为4πR2=20π 故答案为:20π

16.(5分)(2009•全国卷Ⅰ)若最大值为 ﹣8 .

【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决. 【解答】解:令tanx=t,∵∴

,则函数y=tan2xtan3x的

故填:﹣8.

三、解答题(共6小题,满分70分)

17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b. 【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.

【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC, 则由正弦定理及余弦定理有:

化简并整理得:2(a2﹣c2)=b2. 又由已知a2﹣c2=2b∴4b=b2. 解得b=4或b=0(舍);

法二:由余弦定理得:a2﹣c2=b2﹣2bccosA. 又a2﹣c2=2b,b≠0.

所以b=2ccosA+2①又sinAcosC=3cosAsinC,

∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC, 即sinB=4cosAsinC由正弦定理得故b=4ccosA②由①,②解得b=4.

18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=ABM=60°

(I)证明:M是侧棱SC的中点; (Ⅱ)求二面角S﹣AM﹣B的大小.

,DC=SD=2,点M在侧棱SC上,∠

【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,

设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进

而得到M为侧棱SC的中点;

法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;

法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.

(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.

【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E, 连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x, 在RT△MEB中,∵∠MBE=60°∴

在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2 解得x=1,从而

∴M为侧棱SC的中点M.

(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则

设M(0,a,b)(a>0,b>0), 则

由题得

,.

解之个方程组得a=1,b=1即M(0,1,1) 所以M是侧棱SC的中点.

(I)证法三:设则又故即

解得λ=1,所以M是侧棱SC的中点. (Ⅱ)由(Ⅰ)得

又设量, 则即分别令即∴

,,

分别是平面SAM、MAB的法向

, 且

得z1=1,y1=1,y2=0,z2=2,

二面角S﹣AM﹣B的大小

19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互,已知前2局中,甲、乙各胜1局.

(I)求甲获得这次比赛胜利的概率;

(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.

【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互,根据相互事件的概率公式得到结果.

(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互,得到变量的分布列,求出期望.

【解答】解:记Ai表示事件:第i局甲获胜,(i=3、4、5) Bi表示第j局乙获胜,j=3、4

(1)记B表示事件:甲获得这次比赛的胜利, ∵前2局中,甲、乙各胜1局,

∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局, ∴B=A3A4+B3A4A5+A3B4A5 由于各局比赛结果相互,

∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5) =0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6 =0.8

(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3

由于各局相互,得到ξ的分布列 P(ξ=2)=P(A3A4+B3B4)=0.52 P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48 ∴Eξ=2×0.52+3×0.48=2.48.

20.(12分)(2009•全国卷Ⅰ)在数列{an}中,a1=1,an+1=(1+)an+(1)设bn=

,求数列{bn}的通项公式;

(2)求数列{an}的前n项和Sn. 【分析】(1)由已知得所求的通项公式.

(2)由题设知an=2n﹣(1++

+

+…+

),设Tn=1+

,故Sn=(2+4+…+2n)﹣+

+

+…+

,由错位相减

=

+

,即bn+1=bn+

,由此能够推导出

法能求出Tn=4﹣.从而导出数列{an}的前n项和Sn.

=

+

【解答】解:(1)由已知得b1=a1=1,且即bn+1=bn+b3=b2+bn=bn﹣1+

(n≥2).

+…+

=2﹣

,从而b2=b1+,

于是bn=b1++又b1=1,

(n≥2).

故所求的通项公式为bn=2﹣(2)由(1)知an=2n﹣

故Sn=(2+4+…+2n)﹣(1++设Tn=1+Tn=+

++

++…+

+…+

+

++…+),

,① ,②

①﹣②得,

Tn=1++++…+﹣

=﹣=2﹣.

﹣,

∴Tn=4﹣

∴Sn=n(n+1)+

﹣4.

21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点. (Ⅰ)求r的取值范围;

(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围. (2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.

【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r

>0)的方程,

消去y2,整理得x2﹣7x+16﹣r2=0(1)

抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是: 方程(1)有两个不相等的正根 ∴

解这个方程组得

(II)设四个交点的坐标分别为

则直线AC、BD的方程分别为y﹣y+

=

(x﹣x1),

,0),

=

•(x﹣x1),

解得点P的坐标为(

则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令

则S2=(7+2t)2(7﹣2t)下面求S2的最大值.

由三次均值有:

当且仅当7+2t=14﹣4t,即经检验此时

故所求的点P的坐标为

22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].

(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域; (2)证明:

时取最大值.

满足题意.

【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可; (2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c的范围求出f(x2)的范围即可. 【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)

依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]

等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.

由此得b,c满足的约束条件为(4分)

满足这些条件的点(b,c)的区域为图中阴影部分.(6分)

(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0, 则故

.(8分)

由于x2∈[1,2],而由(Ⅰ)知c≤0, 故

又由(Ⅰ)知﹣2≤c≤0,(10分) 所以

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务