您好,欢迎来到测品娱乐。
搜索
您的当前位置:首页仿松质骨的胶原/纳米羟基磷灰石人工骨修复免大段骨缺损

仿松质骨的胶原/纳米羟基磷灰石人工骨修复免大段骨缺损

来源:测品娱乐
中国组织工程研究与临床康复第 2 第4 2008—11—04出版 肋 Medic Journal of Clinical Rehabilitative Tissue Engineering Research November 2008 Vol 12,No.45 Nano・—hydroxyapatite/collagen composites imitating cancellous bone for repair of massive bone defects in rabbits*** Hu Qing-liu Abstract BACKGRoUND:A nano—artiifcial bone imitating cancellous bone has been developed.It is necessary to perform a series of anima1 experiments regarding this artiifcila bone prior to clinical trials for providing technical information. OBJECTIVE:To evaluate the biodegradability,osteoconductivity,and osteoinductivity of nano—hydroxyapatite/collagen (nano—HA/C01 composites imitating cancellous bone. DESIGN.TIME AND SETTING:A randomized controllde animal experiment was performed at the Guangdong Medical Laboratory Animal Center between March and June 2007. MATERIALS:The HA powder was synthesized by a co.precipitation reaction.The obtmned HA powder was added into collagen solution at a certain ratio under vigorous stirring.The nano—HA/CO composites were frozen—dried to obtain nano—artiifcial bone.Fiften New Zealand rabbits were randomly divided into 3 groups,with 5 rats per group:blank control, coral—HA.and llano—HA/CO. METHoDS:Following local anesthesia。10 mill bone defect was made on the right ulnas in al1 rabbits.HA coral and Nano—HA,CO bone composites were inserted into the defcets in the HA and nano—HA/CO groups,respectively.The blank control group received no any implantation.At 30 and 60 days following surgery,biocompatibility and osteoinductivity of cancellous bone resembling nano—HA/CO bone substitute were assessed by macroscopic examination,scanning electron microscopy,X—ray photography,and histological examination after implnatation in vivo. MAIN 0UTC0ME MEASURES:Ulrtastructure and degradation condition of nano—HA/CO bone substitute,postoperative wound healing,and osteo—regeneration in defcet region. RESULTS:The llano—HA/CO bone composite possessed interconnectde porosity and pore size resembling cancellous bone, which benefits in—growth of osteoblasts and blood vessels.At 30 days following surgery.the nano—HA,Co group exhibited that osteoblasts spread around.and ossification occurred in almost all newly formed bone area.At 60 days following surgery. the coral—HA group showed that only connective tissue regenerated without bone tissue regeneration and degradation of rgafts. CoNCLUSION:This nano—HA/CO bone composite shows great promise in repaiirng massive bone defect in stead of autograft. metabolism instead of being a permanent implant. INTR0DUCTlON MATERIALS AND METH0DS The regeneration of bone is one of the major diifculties in clinical surgery because many Design conditions including trauma,tumor,and bone Randomized controlled animal experiment. diseases such as osteitis and osteomyefiits can cause bonedefectstl/.TOrestorethe slructureandfunctionof Time and setting bone,many solutions have been used in therapy nad Performed at the Guangdong Medical Laboratory research,including autografts,anografts,xenografls, Animal Center between March and June 2007. andotherartiifcial substituteslZ1.However,these solutions arenotperfectand eachhasits speciifc Materials problems.111e appficafion of guided bone regeneration A total of 1 5 New Zealand rabbits of specific nilarge.verticalosseousdefectsinweightbeating pathogen—free(SPF),weighing 1.5—2.0 ,were bones is especially valuable to provide a proper provided by the Guangdong Medical Laboratory surgical solutionforthis complexproblem Animal Center rpermission No.SCXK2003—0002). In this research,a kind of nano—hydroxyapatite/ Al1 rats were randomly divided into 3 groups with 5 coRagen(nano—HA,C0、bone substitutes which rats per group:blank control,coral hydroxyapatite resembles canceUous bone in interconnected rHA)。and nano HA/C0.A11 animals utilized in this porosity and pore size was prepared.The research were cared for according to the policies and microstructure was studied by using scanning principles established by the Animal We1fare Act electron microscopy(SEM)and porosity and the NIH guide for care and use of laboratory measurement.The biocompatibillty, anima1s【4J _osteoconductivity and osteo.inductivity of the Coral hydroxyapatite was sourced from Beijing composke scaffolds were evaluatedby{i,/vivo Yihuaiian Science nad Trade Co,.Ltd..China; implantation,X—ray photography and histological Pentobarbital sodium was provided by the Sigma observation.Results have demonstrated that the Company,USA.Nano—HA/C0 bone substitutes bone substitutes are readily incorporated into bone (30 mmx20 mmx10 mm)were self prepared. lsSN l673—8225 CN21.1539,R CoDEN:ZLKHAH CenterforAdvanced Materialsand Biotechnology,C717 Researchht ̄tuleof TsinghuaUniversityin Shenzhea,St ̄zhen 518057,Guangdong Province,China Hu Qing-liu☆.Doctor, Researcher,Centerfor AdvancedMaterials andBi ̄echnology, C717.Research Institute ofTsinghua Universityin Shenzhen, Shenzhen 518057. Guangdong Province, na huqingliuth@yaboo ODIILCn Supported by: Shenzhen Municipal Scienceand Technology Pmject ̄ No SXF200646405"; Shenzhen Municilxd NanshanScientiifc& PlanningProgramin 2oo8 Received:2()o8—06-l1 Accepted:2008—11-20 (542008061 10006/M) HuQL Nallo- hydroxyapatite/collag eft composites imitating cancellous bonefor repairof massive bone defects in rabbits.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu 2008;12f451: 8935—8938(China1 [http://www.crte cn http://en・zglckf.com] 8935 。’≯’’l。’:0’’usejdto—observetheusultrastructuresanofbonsesur—bstitutecoas.Thea。’,擘(,twass。’0‘’。,?0a“一’。,.ij、。r冀::i二二.。“|1皇:Snano.HA/COboneobstitutetionwereputtetedowithHAynthesiz󰀀edbyco—precipitationreactionBrielfylayermafgcaoldfo.robservadvaryinglevelsf44gCaCl22H20OfH1P04ThepHvbyNa0Hwasdispersedin1000mLH20andthen17mLsolutionwassimultaneouslyandgraduallyaddedalueofthereactionsolutionwascontrolledtobe75,.gnifitionPorositytest:Thepwascaorosuityvaluevoofnanoc—HA/CObonee.su,bstituteslumeolclatedbywluenmehangtest.Theansolutioeswn,nhed3tim.Theprecipitateswithdeionizedwater.ereaniltratedfewithsuctionvofthesoasampleascaprecislyoiddrdaot100℃foratferwater.48hoursThenano—thep.recipitateswerecrushedtobtainHAindifferencecakingforThevaluesaccor,lculatioreightedpriortofsamplevolumewedweremetersizelculatedThecoobtainedHApowdersowasaddedinto1000smLvaofeoV0/fth.×100%indingtowhicho,gisteredandtheporositywasthefollowingformula:P(V0K)PrepresentedporosityKindicated=llagenlutionundervigorousrolledtobepositeswascontFinallytheHA/COcompositescomgThepH7375byNaOH.tirrinluethevolumecsoasoahangefwater..soluotionwerefrozendriedtobtainkingking,and%wasthevotermaterialpriortoandaflumeofmaterialpriortowater.porousbonesubstitutes(Figure1).Theheatingprocess.ofbonedefectswasevaluatedbyX—rayphotographyAt30weresacrificedandtissueemanmd60daysfollowingsurgeryrabbitsacroscopica~yexamniedThenthe..blocksbeddedinngspecimenswereprisiinandstainedwithheparaffcom,resected,ifxed,matoxiytnandeosniofrhistologicalexamination.UltrastrubonFiguree—1Nanohydroxypaatite/collagencompositeosteoddegradationconditionofnanoHA/COsubstitutendpostoperativewoundhealingaregenerationindefectregioncturean,—,.。、’Lithpentobarbitalsodium(40mg/kgbodyweight)everyrabbitteirghtgota10nlinbonedefectinhulnas(Figure2a)ThenanoHA/C0bonesubstitutesf10minxnaesw,—AfterthetizedAll15’rabbitswerenicludedinthefi。nalanalysis.6mmx6mm)nadHAcora—ls(10mmx6mmx6mm)were:_’’?,。。。._implantedintothenanoHA/C0(Figure2b)andHA(Figure2c)groupsrespectivelyTheblankcontrolgroupreceivednonyimplantationa,..SEMconobservationofnanoHA/C0bo.nesubstitutesresizesshowedtinuousmacroporeconnectivityThepoeenrangedledthatbetw100—400lam(Figure3)Porosity.test.reveathesecompositesholdporosityof(838+50)%..a:10Inmradefeucwascreatedinb:Nancomosbbitrightlnapohydroxyapatite/ollagencitewasinsertedinincisionFigure3鼷c:hingelectronmicroscopyexaminationofhydroxyattafieHaThcoenbonecomositeebneoimltresemnapgppblescanceHousboneininterconneedtctosiyandporeorpScann.size(Bar=100“m、Figure2Implantationofeachgroupapatitecoraly/insertedinincisionroxyawasItcan—beobservedthatthedefects,weregradualyrepairedbypositesandthecompositeswereabsorbedat30daysafterimplantation(Figures4ab)Converselynoregenerationoccurredat60dasaftergraftingofHAcoralynanocom,.HA/COArcbt~c2u:c0f喙a舟0f:A/CO扔0一册8sef垤舯香u}0es,(Figure4c)Japan)wascontro,andonlytendertissuererekgeneratedintheblanSEM36observation:SEM(JSM60LVlectronlgroup(Figu4d).尼刀。m∞珊。喇’‘遵’一󰀀、.一,¥0.≤:J蠢|,二ss___tionacoun.’—c:Meb:0ificadbloodovessels(V1invasionIdbebserved60ondaysafterimplantationcollahydroxylapatite/geitesfnanocomposdullaryacavity(M)recanaolizedd:Condaysanectivetissuere60daysnano‘fterimplantationx’’fncornfterimplalwntationofos—generated6lhydroxyhydro‘collageylapatite/lapatitecoraithoutpos~tesinincisionteoregenerationFigure6Hisstologic,alchangesofdefectregion(Hematoxylineosintaining×40)Xra—5ayphod1.tographyconfamedtheaboveresults(FiguresDISCUSSl0NNewZealandrasrebbitisgaracommonlycuseedhealternativeanimalfbrreresearc13oJheduepairpesutotheandingbonefracasethatithawerfuturalinganddefect,temnarament,dpoditablefortrespeatedelproxperimrderateifguredocilepagationandiseasytofeedsmo,ents.Thecurrengoldtandardfobonegrafting■butitsharvdiscomfortandmorbidityrisl(stibonegrafngisautogengisassociatedwithesti[81.nousapparenttoFuthermrore.hteamoun.ftenmakesautograftinginfeasiblegraftneededclinicaHyofTheconventionalalternativetoautografthasbeenallogenicboneobtainedeitherfromcadaveficdonorsorfromdonorsdergoingtotalhiparthroplastyAlthoughitprovidesagoodnaturalbonyscafoldallogenicbonecarriescertainrisksSpecificallNdespitetheextensivetestingofthedonorandtheun.,,,.bonerfraomobtaineed,airskofbothbacterialltothpreandniviras[91.ltransmoissionsomehtdonormateriaworhostoremaAlseineasonsfthenldth,eacticefallogenic.bontraplatationisculturallyunacceptatobelievethatsupplywbleoUnfrtunatelythereInhistologicalgoostudies.htean,increasingboneformoaationsehowedistittledemanreasond—osteo—conductivitydbiocompatibilltyfthdA.sthesupplyomeefecadavemsircilkeeppacewimbonegraftbecomesna.nanowHA/COtcomithouelnfiammandnewboneformpositesationthroughouttheexperimtioninNidcreasedincapableuseooftingthepideents.ewwlvtheoutfesformandboneswerelinkedtoataneachohtaerwithoosteo—ithderevelopmfyntheticbonegratntofbiomaterialsoftiscooniologicallydrivendemubstituteswillnicreasehardtissuered,Therpairandyresidualcompositesn30daystfernansHA/COarounmr.placementinuouslystimulatedbytheunsatisfactory.positeimpla6a)Ossificationcom.tation,dosateoblastsllpreadlyforedfFigureoccurrevessedinlmvaostanewedbonenperformadevelopmceenfavailable,materialsVarioacusapproachestohtforetofbioabsorbableandbiotivecomposites.raeasx,anadbloodls(V)inarded(Figure—6b)Ehilartinglymedul—ycavity(M)implantationofnanoHA/COcompos6c)InthecoralHAgrouponlyconnectivetissuewithoutbonetissueregenerationanddegradation.built60daysafteritesindefects(FigurereoboneimplantarebeingnivestigatedallovertheworldincludingcombinaitonsofabsorbablepolymerswitllHAbioactiveglassesandglassceraicsimndifferentscafold—or,generatedfgratfs60daysatferimplantation(Figure6d).CalciumphosphateceramicsinvariousmorfsespeciallyHAwithbonebondingpropertiesarewidelyusedinorthopedicsurgeryandotherapplicationsracres.—hitectu,[1U1,.isSN16738225.CN2i1539fR.CoDEN:zLKHAH37_e CRT眦雌H QL№rf()_h姬ro te/c n co唧∞i ㈨t g c m bo l0r s b d c n b Dense HA ceramics in particulate form is frequently used in alveolar ridge augmentation and in a variety of maxillofacial surgery.However,speciifc disadvantages stlil limit the usage Of HA ceramics in many situations.These disadvantages and osteoinductivity in comparison wim HA cora1 which is usedfrequentlyin clinicinChina. The processing methods of the present nano—HA/C0 composites have been patented in China.No.ZL 2005 10107942.0.This study aimed to promote the include the brittle nature of dense sintered HA,the conflicting needs of porosity and mechanical strength,the diicultfy in shaping ceramic blocks,and the migration problem of ceramic commercial production of hese natno—HA/CO bone substitutes used in orthopedics.However,the precise mechanisms of bone defect repaired by these nano—HA/CO composites.as well as the resorption process,remain unclear and need further investigation. particles.Moreover.pure HA ceramics with high crystallinity re anon—bioabsorbable and serve as permanent implants n vivo.In addition.the rigid ceramic structure of HA implants may cause stress shielding in adjacent areas. The ideal scaffold should meet the following requests【“ :be biocompatible and biOdegradab1e:the degradation rate matching tissue growth;be three.dimensional with a igh hdegree of jnterconnected porosity to allow tissue jngrowth;the optimum pore size ranging between 1 50—800 m or fbone Mehta S.Bone 1OSS.contraception and lactation.Acta Obstet Gynecol Scand 1993:72f3):l48—156 Kao S Scott DD.A rcview of bone substitutes Ora1 Maxillofac Surg Clin Nonh Am 2007;19(4 :513.521 REFERENCES regeneration;have a surface upon which cells will attach, diferentiate,and proliferate;have mechanical properties that match those at the implant site。and degrade in a manner that Liu G Zhao L,Zhang et a1.Repair 0f goat tibial defects with bone marrow stroma1 cells and beta—tricalcium phosphate J Mater Sci Mater Med 2008;19(6):2367—2376 The Ministry of Science and Technology of the People’s Republic of China.Guidance Suggestions for the Care and Use of Laboratory Animals,2006—09—30. provides suppo ̄to the new tissue until it is capable of supporting itseIf.The present nano—HA/CO bone composites Kong L,Ao Q,Wang A,et a1.Preparation and characterization of a multilayer biomimetic sca仃0】d or fbone tissue engineering.J Biomater 5 6 met all these criteria.showed prominent bioresorbability, 2 3 4 Appl 20O7:22(3):223.239 Ascherman JA.Fop R.Nanda D.et a1.Reconstruction of cranial bone defects using a quick.setting hydroxyapatite cement and absorbable plates.JCraniofacSurg2008;19f4):】131.1l35 ed Grauer J.Silicates and bone fusion Orthopedics 2008; Biodegradable hydroxyapatite.polymer 3lf61:591.597 Durucan C.Brown P 7 8 9 osteoc0nductiVity and osteoinductivity in in vivo experiments, degraded in a manner that provides support to the new bone tissue until it was capable of supporting itself.This nano—HA/CO implant showed a continuous macr0Dore connectivity by SEM observation and hold appropriately 84% composites.Adv Eng Mater 200l;3:227—23】 Asselmeier MA.Caspari RB.Bottenfield S.A review of allografl processing and steriliatzion techniques and their role in transmission of porosity【porosity of cancellous bone is(78±3)%L]21]and the pore diameter ranged between l 00—40O m.which are 10 the human immunodeficiency virus.Am J Sports Med 1993:21f2): 170—175 analogous to natural cancellous bone.These architectures could give adequate space for osteoblast immigration and di矸erentiation.Besides that.with the degradation of collagen ifbrils.the material could give more space for cell growth and vesse1 invasion into bone tissue.Ostep—regenesis and resorption of nano—H c0 composites were very active after implantation,appearmg to possess superior osteoconductivity Linhart W,Peters F Lehmann et a1.Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials.J Biomed Mater Res 200l:54(21:162一l71 Cooke MN.Fisher JP Dean D.et al Use of stereolithography to manufacture critical—sied z3D biodegradable scaffolds orf bone ll ingrowth.J Biomed Mater Res B App1 Biomater 2003;64(2):65—69 12 Ramay HR.Zhang M.Preparation of porous hydroxyapatite scaffolds by combination of the gel—casting and polymer sponge methods. Biomaterials 2003;24(1 9):3293.3302 仿松质骨的胶原/纳米羟基磷灰石人工骨修复免大段骨缺损术术☆ 胡庆柳(清华大学研究院C717新材料与生物医药研究所,广东省深圳市518057) 胡庆柳☆,男,1969年生,湖南省祁阳市人, 入胶原溶液中充分混合,然后冷冻干燥即得 纳米人工骨组缺损处被纳米人工骨修复,人 工骨被彻底降解。植入后60 d羟基磷灰石瑚 汉族,2002年第一军医大学毕业,博 士,研究员,主要从事医用可降解材料研究。 深圳市科技计划项目(sXF200646405)*; 2008深圳市南山科技计划项目{ 块状纳米人工骨 15只新西兰大白兔,随机 分成3组,每组5只,分别为空白对照组、 羟基磷灰石珊瑚组和纳米人工骨组。 瑚组未见骨修复和骨降解,仅见大量软组织 再生。 方法:所有动物局部麻醉后在侧尺骨造成 结论:自制仿松骨胶原/纳米羟基磷灰石人工 摘要 背景:课题组自主研发一种仿松质骨生物活 性纳水人工骨,在临床试验前进行系列的动 物实验提供必需的技术资料。 目的:评价自主研发的仿松质骨胶原/纳米羟 基磷灰石人工骨的生物可降解性、骨引导性 10 mm全缺损,纳米人工骨组和羟基磷灰石 珊瑚组分别植入纳米人工骨、羟基磷灰石珊 骨可降解,成骨效果好,可替代自体骨移植 修复大段骨缺损。 关键词:羟基磷灰石;胶原:人工骨;组织 工程 中图分类号:R318文献标识码:B 文章编号:1673—8225(2008)45.08935—04 瑚,空白对照组不植入任何物质。在植入后 3O,60 d,通过大体观察、X射线摄片、电 子显微镜及组织学评价该人工骨的的生物相 容性和骨诱导性。 主要观察指标:纳米人工骨的超微结构,创 面愈合情况,人工骨降解情况和缺损区骨组 织再生情况。 结果:该人工骨具有与天然松质骨相似的内 连孔结构、孔隙率和孔径,这种结构有利于 骨细胞的长入和血管新生;植入后30 d可见 和骨诱导性。 设计、时间及地点:随机对照动物实验,于 2007 03—01/06 08在广东省医学实验动物中 心完成。 材料:纳米羟基磷灰石粉末通过共沉淀反应 合成 将纳米羟基磷灰石粉末按一定比例加 8938 胡庆柳.仿松质骨的胶原/纳米羟基磷灰石人 工骨修复兔大段骨缺损【J1.中国组织工程研 究与临床康复,2008,12(45):8935—8938 [http:/1www.crier.org http://cn.zglckf.com】 (Edited by Tang LIJSong LP/Wang L) P.O.Box 1200,Shenyang 110004 c7l zglckfcom 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- cepb.cn 版权所有 湘ICP备2022005869号-7

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务